Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Pham Trong Bach

Gọi S là tập hợp tất cả các số nguyên m sao cho tồn tại hai số phức phân biệt z 1 , z 2  thỏa mãn đồng thời các phương trình z - 1 = z - i  và z + 2 m = m + 1 . Tổng tất cả các phần tử của S

A. 1

B. 4

C. 2

D. 3

Cao Minh Tâm
21 tháng 4 2019 lúc 4:54

Cách 1 (cách hình học): Gọi M ( x ; y ) x . y ∈ ℝ  là điểm biểu diễn của số phức z thỏa mãn yêu cầu bài toán.

Có: z + 2 m = m + 1 ≥ 0  

TH1: m + 1 = 0 ⇔ ⇔ m = - 1 ⇒ z = 2  (loại) vì không thỏa mãn phương trình: z - 1 = z - i  

TH2: m + 1 > 0 ⇔ m > - 1  

Theo bài ra ta có:

z - 1 = z - i z + 2 m = m + 1 ⇔ x - 1 + y i = x + y - 1 i x + 2 m + y i = m + 1 ⇔ x - 1 2 + y 2 = x 2 + y - 1 2 x + 2 m 2 + y 2 = m + 1 2 ⇔ x - y = 0 1 x + 2 m 2 + y 2 = m + 1 2 2 *

Từ (1) suy ra: tập hợp điểm M(x;y) biểu diễn của số phức z là đường thẳng: ( ∆ ) :   x - y = 0  

Từ (2) suy ra: tập hợp điểm M(x;y) biểu diễn của số phức z là đường tròn

( C ) :   T â m   I ( - 2 m ; 0 ) b k   R = m + 1  

Khi đó: M ∈ ∆ ∩ ( C ) ⇒  số giao điểm M chính là số nghiệm của hệ phương trình (*).

Để tồn tại hai số phức phân biệt z 1 , z 2  thỏa mãn ycbt ⇔ ( C )  cắt ∆  tại hai điểm phân biệt

⇔ d I , ∆ < R ⇔ - 2 m 2 < m + 1 m + 1 > 0 ⇔ - m + 1 < 2 m < m + 1 m + 1 > 0 ⇔ 1 - 2 < m < 1 + 2 m > - 1

Vì m ∈ ℝ ⇒ m ∈ S 0 ; 1 ; 2 . Vậy tổng các phần tử của S là 0+1+2=3.

 

Cách 2 (cách đại số):

Giả sử: z = x + y i x ; y ∈ ℝ  

Có:  z + 2 m = m + 1 ≥ 0

TH1: m + 1 = 0 ⇔ ⇔ m = - 1 ⇒ z = 2  (loại) vì không thỏa mãn phương trình: z - 1 = z - i  

TH2: m + 1 > 0 ⇔ m > - 1  (1)

Theo bài ra ta có:

z - 1 = z - i z + 2 m = m + 1 ⇔ x - 1 + y i = x + y - 1 i x + 2 m + y i = m + 1 ⇔ x - 1 2 + y 2 = x 2 + y - 1 2 x + 2 m 2 + y 2 = m + 1 2 ⇔ y = x x + 2 m 2 + x 2 = m + 1 2 ⇔ y = x 2 x 2 + 4 m x + 3 m 2 - 2 m + 1 = 0 *

Để tồn tại hai số phức phân biệt z 1 , z 2  thỏa mãn ycbt PT (*) có 2 nghiệm phân biệt

⇔ ∆ ' = 4 m 2 - 2 ( 3 m 2 - 2 m - 1 ) = 2 - m 2 + 2 m + 1 > 0 ⇔ 1 - 2 < m < 1 + 2 ( 2 )

Kết hợp điều kiện (1) và (2),  m ∈ ℝ ⇒ m ∈ S = 0 ; 1 ; 2

Vậy tổng các phần tử của S là: 0+1+2=3

Chọn đáp án D.

 

 

 

 


Các câu hỏi tương tự
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết