Gọi S là tập hợp tất cả các số nguyên m sao cho tồn tại hai số phức phân biệt z 1 , z 2 thỏa mãn đồng thời các phương trình z - 1 = z - i và z + 2 m = m + 1 . Tổng tất cả các phần tử của S là
A. 1
B. 4
C. 2
D. 3
Gọi S là tập hợp các số nguyên m sao cho tồn tại 2 số phức phân biệt z 1 , z 2 thỏa mãn đồng thời các phương trình z - 1 = z - i và z + 2 m = m + 1 . Tổng các phần tử của S là
A. 1
B. 4
C. 2
D. 3
Gọi S là tập hợp tất cả các giá trị thực của m để tồn tại 4 số phức z thỏa mãn | z + z ¯ | + | z - z ¯ | = 2 và z ( z ¯ + 2 ) - ( z + z ¯ ) - m là số thuần ảo. Tổng các phần tử của S là:
A. c
B. 2 + 1 2
C. 2 - 1 2
D. 1 2
Gọi S là tập hợp tất cả các giá trị thực của tham số m để tồn tại duy nhất số phức z thoả mãn z. z =1 và |z-3-4i|=m. Tính tổng các phần tử thuộc S.
A. 10.
B. 42.
C. 52.
D. 40.
Gọi S là tập hợp tất cả các số phức z thoả mãn z - 1 = 34 và z + 1 + m i = z + m + 2 i . Gọi z1, z2 là hai số phức thuộc (S) sao cho z 1 - z 2 nhỏ nhất, giá trị của z 1 + z 2 bằng
A.2
B. 2 3
C. 2
D. 3 2
Gọi S là tập hợp các số phức z có phần thực và phần ảo đều là các số nguyên đồng thời thoả mãn hai điều kiện: z - 3 - 4 i ≤ 2 và z + z ¯ ≤ z - z ¯ . Số phần tử của tập S bằng
A. 11.
B. 12.
C. 13.
D. 10.
Gọi S là tổng tất cả các số thực m để phương trình z 2 - 2 z + 1 - m = 0 có nghiệm thức z thỏa mãn z = 2 . Tính S
A. S = -3
B. S = 6
C. S = 10
D. S = 7
Gọi S là tập hợp các số phức z thỏa mãn. Tổng giá trị tất cả các phần tử của S bằng
A. 1 - 2 3 i
B. - 3 - 3 3 i
C. 1
D. 1 - 3 i
Gọi S = − ∞ ; a b (với a b là phân số tối giản, a ∈ Z , b ∈ N * ) là tập hợp tất cả các giá trị của tham số m sao cho phương trình 2 x 2 + m x + 1 = x + 3 có hai nghiệm phân biệt. Tính B = a 2 − b 3 .
A. B = 334.
B. B = − 440 .
C. B = 1018.
D. B = 8.