Cho hàm số y = x + 2 x + 1 có đồ thị là (C). Gọi d là khoảng cách từ giao điểm 2 tiệm cận của (C) đến một tiếp tuyến bất kỳ của (C). Giá trị lớn nhất d có thể đạt được là:
A. 3 3
B. 2 2
C. 3
D. 2
Cho hàm số y = x 4 − 4 x 2 + 3 có đồ thị (C). Có bao nhiêu điểm trên trục tung từ đó có thể vẽ được 3 tiếp tuyến đến đồ thị (C).
A. 3
B. 2
C. 1
D. 0
Cho hàm số y = x 4 − 4 x 2 + 3 có đồ thị (C). Có bao nhiêu điểm trên trục tung từ đó có thể vẽ được 3 tiếp tuyến đến đồ thị (C)
A. 3
B. 2
C. 1
D. 0
Tìm trên đường thẳng x = 3 điểm M có tung độ là số nguyên nhỏ nhất mà qua đó có thể kẻ tới đồ thị (C) của hàm số y = x 3 - 3 x 2 + 2 đúng 3 tiếp tuyến phân biệt.
A. M(3;2)
B. M(3;-6)
C. M(3;1)
D. M(3;-5)
Cho hàm số y=f(x) có đồ thị là (C), hàm số y=f'(x) có đồ thị như hình vẽ bên. Tiếp tuyến với (C) tại điểm có hoành độ x=2 cắt (C) tại hai điểm phân biệt có hoành độ lần lượt là a,b
Giá trị ( a - b ) 2 thuộc khoảng nào dưới đây
A. ( 0 ; 9 )
B. ( 12 ; 16 )
C. ( 16 ; + ∞ )
D. ( 9 ; 12 )
Cho hàm số y = x 3 - 2 x 2 + 2 có đồ thị (C) và điểm M(1;1) thuộc (C). Gọi ∆ là tiếp tuyến của (C) tại M. Đường thẳng ∆ đi qua điểm nào sau đây?
A. P(0;-2).
B. Q(3;0).
C. R(-3;0).
D. S(0;2).
Cho hàm số y = f(x) =(ax+b)/(cx+d)(a,b,c,d ϵ R;c ≠ 0;d ≠ 0) có đồ thị (C). Đồ thị của hàm số y = f’(x) như hình vẽ dưới đây. Biết (C) cắt trục tung tại điểm có tung độ bằng 2. Tiếp tuyến của (C) tại giao điểm của (C) và trục hoành có phương trình là
A. x – 3y +2 = 0
B. x + 3y +2 = 0
C. x – 3y - 2 = 0
D. x + 3y -2 = 0
Cho hai hàm số f ( x ) = a x 4 + b x 3 + c x 2 + d x + e với a ≠ 0 và g(x)= p x 2 + q x - 3 c ó đồ thị như hình vẽ bên dưới. Đồ thị hàm số y=f(x) đi qua gốc tọa độ và cắt đồ thị hàm số y=g(x) tại bốn điểm có hoành độ lần lượt là -2;-1;1 và m. Tiếp tuyến của đồ thị hàm số y=f(x)-g(x) tại điểm có hoành độ x=-2 có hệ số góc bằng -15/2. Gọi (H) là hình phẳng giới hạn bởi đồ thị hai hàm số y=f(x) và y=g(x) (phần được tô đậm trong hình vẽ). Diện tích của hình (H) bằng
A. 1553 120
B. 1553 240
C. 1553 60
D. 1553 30
Cho hàm số y = x + 2 x + 1 ( C ) . Gọi d là khoảng cách từ giao điểm hai tiệm cận của đồ thị (C) đến một tiếp tuyến của (C). Giá trị lớn nhất d có thể đạt được là:
A. 3 3
B. 3
C. 2
D. 2 2