Mình sẽ giải bằng tiếng Việt cho dễ hiểu nhé :)
Đề bài : Cho \(f\left(x\right)=x^4+ax^3+b\) chia hết cho \(g\left(x\right)=x^2+1\) . Tính a + b
Theo đề , ta đặt \(f\left(x\right)=g\left(x\right).n\left(x\right)\) với \(n\left(x\right)=x^2+cx+d\)
Vậy thì : \(x^4+ax^3+b=\left(x^2+1\right).\left(x^2+cx+d\right)\)
\(\Leftrightarrow x^4+ax^3+b=x^4+cx^3+x^2\left(d+1\right)+cx+d\)
Sử dụng đồng nhất hệ thức, ta có a = c , d + 1 = 0 , c = 0 , b = d
Suy ra : a = 0 , b = -1
Vậy a + b = -1