a) Ta có: BC//AD(gt)
Mà \(AD\perp AB\)(gt)
=> BC⊥AB
\(\Rightarrow\widehat{ABC}=90^0\)
b) Ta có: BC//AD(gt)
\(\Rightarrow\widehat{C_2}=\widehat{D_1}=110^0\)(đồng vị)
\(\Rightarrow\widehat{C_1}=180^0-\widehat{C_2}=180^0-110^0=70^0\)(l=kề bù)
c) Ta có: \(\widehat{BCD}=\widehat{C_2}=110^0\)(đối đỉnh)
\(\Rightarrow\widehat{BCI}=\dfrac{1}{2}\widehat{BCD}=55^0\)(do CI là phân giác góc BCD)
Ta có:BC//AD(gt)
\(\Rightarrow\widehat{BCI}+\widehat{AIC}=180^0\)(trong cùng phía)
\(\Rightarrow\widehat{AIC}=180^0-\widehat{BCI}=180^0-55^0=125^0\)