d: Ta có: \(\sqrt{x\sqrt{x}-7}=1\)
\(\Leftrightarrow x\sqrt{x}-7=1\)
\(\Leftrightarrow\left(\sqrt{x}\right)^3=8\)
\(\Leftrightarrow x=4\)
\(a,ĐK:x\ge\dfrac{1}{3}\\ PT\Leftrightarrow\left|x-3\right|=3x-1\\ \Leftrightarrow\left[{}\begin{matrix}x-3=3x-1\left(x\ge3\right)\\x-3=1-3x\left(x< 3\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\left(ktm\right)\\x=1\left(tm\right)\end{matrix}\right.\Leftrightarrow x=1\\ b,ĐK:x\in R\\ PT\Leftrightarrow\left|1-2x\right|=5\\ \Leftrightarrow\left[{}\begin{matrix}1-2x=5\left(x\le\dfrac{1}{2}\right)\\2x-1=5\left(x>\dfrac{1}{2}\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\left(tm\right)\\x=3\left(tm\right)\end{matrix}\right.\)
\(c,ĐK:x\ge0\\ PT\Leftrightarrow\left|6x-2\right|=x\\ \Leftrightarrow\left[{}\begin{matrix}6x-2=x\left(x\ge\dfrac{1}{3}\right)\\6x-2=-x\left(x< \dfrac{1}{3}\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{5}\left(tm\right)\\x=\dfrac{2}{7}\left(tm\right)\end{matrix}\right.\\ d,ĐK:x\ge\sqrt[3]{49}\\ PT\Leftrightarrow x\sqrt{x}-7=1\\ \Leftrightarrow\sqrt{x^3}=8\\ \Leftrightarrow x^3=64\Leftrightarrow x=4\left(tm\right)\)
\(e,ĐK:x\le2\\ PT\Leftrightarrow4\left(x^2+7\right)=\left(2-x\right)^2\\ \Leftrightarrow4x^2+28=4-4x+x^2\\ \Leftrightarrow3x^2+4x+24=0\\ \Delta'=2^2-24\cdot3=-68< 0\\ \Leftrightarrow x\in\varnothing\)