Ta có : \(2^{20}=\left(2^5\right)^4=32^4\)
\(3^{12}=\left(3^3\right)^4=27^4\)
Lại có: \(27< 32\Rightarrow27^4< 32^4\)
\(\Rightarrow3^{12}< 2^{20}\)
Vậy\(3^{12}< 2^{20}\)
ta có \(3^{12}=\left(3^3\right)^4=27^4\)
mà \(2^{20}=\left(2^5\right)^4=32^4\)
vì 27<32 => \(27^4< 32^4\)
=> \(3^{12}< 2^{20}\)
So Sánh:
312 = ( 33)4= 274
220 = ( 25)4 = 324
Vì 274 < 324 nên 312 < 220
Ta có : 2^{20}=\left(2^5\right)^4=32^4220=(25)4=324
3^{12}=\left(3^3\right)^4=27^4312=(33)4=274
Lại có: 27< 32\Rightarrow27^4< 32^427<32⇒274<324
\Rightarrow3^{12}< 2^{20}⇒312<220
Vậy3^{12}< 2^{20}312<220