Bài 2:
a: Thay x=1 vào B, ta được:
\(B=\dfrac{2\cdot\left(1-1\right)}{1+1}=0\)
b: \(A=\dfrac{x+\sqrt{x}+1-x+\sqrt{x}-1}{\sqrt{x}}=2\)
Bài 2.
a.Thế \(x=1\) vào B ta có:
\(B=\dfrac{2\left(\sqrt{1}-1\right)}{\sqrt{1}+1}=\dfrac{2.0}{2}=\dfrac{0}{2}=0\)
b.
\(A=\dfrac{x\sqrt{x}-1}{x-\sqrt{x}}-\dfrac{x\sqrt{x}+1}{x+\sqrt{x}}\)
\(A=\dfrac{\left(x\sqrt{x}-1\right)\left(\sqrt{x}+1\right)-\left(x\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(A=\dfrac{x^2+x\sqrt{x}-\sqrt{x}-1-x^2+x\sqrt{x}-\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(A=\dfrac{2x\sqrt{x}-2\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(A=\dfrac{2\sqrt{x}\left(x-1\right)}{\sqrt{x}\left(x-1\right)}\)
\(A=2\)
c.\(P=1:\left(A:B\right)=1:\dfrac{2\left(\sqrt{x}+1\right)}{2\left(\sqrt{x}-1\right)}=1:\dfrac{\sqrt{x}+1}{\sqrt{x}-1}=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}=\dfrac{\sqrt{x}+1}{\sqrt{x}+1}-\dfrac{2}{\sqrt{x}+1}=1-\dfrac{2}{\sqrt{x}+1}\)
Đê P lớn nhất thì \(\sqrt{x}+1\) nhỏ nhất, mà \(\sqrt{x}+1\ge1\) => Min =1
\(\Rightarrow P\le1-\dfrac{2}{1}=1-2=-1\)