\(1,a,=36-12x+x^2\\ b,=\left(x-2\right)\left(x+2\right)\\ c,=x^2-36\\ 2,a,=x^2-10x+25\\ b,=\left(1-2x\right)\left(1+2x\right)\\ c,=4x^2-1\\ 3,a,=25x^2+10x+1\\ b,=\left(2x-3\right)\left(2x+3\right)\\ c,=x^2-4y^2\\ 4,a,=4x^2-4x+1\\ b,=\left(3-5x\right)\left(3+5x\right)\\ c,=9x^2-y^4\\ 5,a,=4x^2+12x+9\\ b,=\left(2x-5\right)\left(2x+5\right)\\ c,=x^4-4y^2\\ 6,a,=9+12x+4x^2\\ b,=\left(3x-4\right)\left(3x+4\right)\\ c,=25x^2-9y^2\)
a: \(4x^4-4x^2+1=\left(2x^2-1\right)^2\)
b: \(\left(x+2y\right)^2=x^2+4xy+4y^2\)
c: \(\left(\dfrac{1}{x}-5\right)\left(\dfrac{1}{x}+5\right)=\dfrac{1}{x^2}-25\)
d: \(x^2-12x+36=\left(x-6\right)^2\)
\(2,\\ a,=\left(2x-1\right)^2\\ b,=x^2+4xy+4y^2\\ c,=x^4-2x^2y^2+y^4\\ d,=\dfrac{1}{x^2}-25\\ a,=\left(x-6\right)^2\\ b,=x^2+10xy+25y^2\\ c,=\left(x^2+9\right)^2=x^4+18x^2+81\\ d,=x^2-\dfrac{9}{4}\)