a) \(Đk:x\ne1\)
\(x^3+\dfrac{x^3}{\left(x-1\right)^3}+\dfrac{3x^2}{x-1}-28=0\)
\(\Leftrightarrow\left(x+\dfrac{x}{x-1}\right)^3-3x.\dfrac{x}{x-1}\left(x+\dfrac{x}{x-1}\right)+\dfrac{3x^2}{x-1}-28=0\)
\(\Leftrightarrow\left(\dfrac{x^2-x+x}{x-1}\right)^3-3.\dfrac{x^2}{x-1}.\left(\dfrac{x^2-x+x}{x-1}\right)+\dfrac{3x^2}{x-1}-28=0\)
\(\Leftrightarrow\left(\dfrac{x^2}{x-1}\right)^3-3.\left(\dfrac{x^2}{x-1}\right)^2+3.\left(\dfrac{x^2}{x-1}\right)-28=0\)
Đặt \(a=\dfrac{x^2}{x-1}\). Khi đó phương trình trở thành:
\(a^3-3a^2+3a-28=0\)
\(\Leftrightarrow\left(a^3-3a^2+3a-1\right)-27=0\)
\(\Leftrightarrow\left(a-1\right)^3-27=0\)
\(\Leftrightarrow\left(a-1-3\right)\left[\left(a-1\right)^2+3\left(a-1\right)+9\right]=0\)
Dễ thấy \(\left(a-1\right)^2+3\left(a-1\right)+9=\left[\left(a-1\right)+\dfrac{3}{2}\right]^2+\dfrac{27}{4}>0\)
Do đó: \(a-4=0\Leftrightarrow a=4\)
\(\Rightarrow\dfrac{x^2}{x-1}=4\Rightarrow x^2=4x-4\)
\(\Leftrightarrow x^2-4x+4=0\Leftrightarrow\left(x-2\right)^2=0\Leftrightarrow x=2\left(nhận\right)\)
Thử lại ta có x=2 là nghiệm duy nhất của phương trình đã cho.
b) \(Đk:\left\{{}\begin{matrix}x+3>0\\x+4>0\end{matrix}\right.\Leftrightarrow x>-3\)
\(\sqrt{\dfrac{1}{3+x}}+\sqrt{\dfrac{5}{4+x}}=4\)
\(\Leftrightarrow\left(\sqrt{\dfrac{1}{3+x}}-2\right)+\left(\sqrt{\dfrac{5}{4+x}}-2\right)=0\)
\(\Leftrightarrow\dfrac{\dfrac{1}{3+x}-4}{\sqrt{\dfrac{1}{3+x}}+2}+\dfrac{\dfrac{5}{4+x}-4}{\sqrt{\dfrac{5}{4+x}}+2}=0\)
\(\Leftrightarrow\dfrac{-\dfrac{4x+11}{3+x}}{\sqrt{\dfrac{1}{3+x}}+2}+\dfrac{-\dfrac{4x+11}{4+x}}{\sqrt{\dfrac{5}{4+x}}+2}=0\)
\(\Leftrightarrow-\left(4x+11\right)\left(\dfrac{\dfrac{1}{3+x}}{\sqrt{\dfrac{1}{3+x}}+2}+\dfrac{\dfrac{1}{4+x}}{\sqrt{\dfrac{5}{4+x}}+2}\right)=0\)
Ta có \(x>-3\) nên dễ thấy \(\dfrac{\dfrac{1}{3+x}}{\sqrt{\dfrac{1}{3+x}}+2}+\dfrac{\dfrac{1}{4+x}}{\sqrt{\dfrac{5}{4+x}}+2}>0\)
Do đó: \(4x+11=0\Leftrightarrow x=-\dfrac{11}{4}\left(n\right)\)
Thử lại ta có x=-11/4 là nghiệm duy nhất của pt đã cho.