2.
\(a,x^4-y^4=\left(x^2-y^2\right)\left(x^2+y^2\right)=\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)\)
\(b,x^2-3y^2=\left(x-y\sqrt{3}\right)\left(x+y\sqrt{3}\right)\)
\(c,\left(3x-2y\right)^2-\left(2x-3y\right)^2\\ =\left(3x-2y-2x+3y\right)\left(3x-2y+2x-3y\right)\\ =\left(x+y\right)\left(5x-5y\right)=5\left(x-y\right)\left(x+y\right)\)
\(d,9\left(x-y\right)^2-4\left(x+y\right)^2\\ =\left[3\left(x-y\right)-2\left(x+y\right)\right]\left[3\left(x-y\right)+2\left(x+y\right)\right]\\ =\left(3x-3y-2x-2y\right)\left(3x-3y+2x+2y\right)\\ =\left(x-5y\right)\left(5x-y\right)\)
\(e,\left(4x^2-4x+1\right)-\left(x+1\right)^2\\ =\left(2x-1\right)^2-\left(x+1\right)^2\\ =\left(2x-1-x-1\right)\left(2x-1+x+1\right)\\ =3x\left(x-2\right)\)
\(f,x^3+27=\left(x+3\right)\left(x^2+3x+9\right)\)
\(g,27x^3-0,001=\left(3x-0,1\right)\left(9x^2+0,027x+0,01\right)\)
\(h,125x^3-1=\left(5x-1\right)\left(25x^2+5x+1\right)\)
Bài 3 :
a) \(x^4+2x^2+1=\left(x^2+1\right)^2\)
b) \(4x^2-12xy+9y^2=\left(2x-3y\right)^2\)
c) \(-x^2-2xy-y^2=-\left(x+y\right)^2\)
e) \(\left(x+y\right)^2-2\left(x+y\right)+1=\left(x+y-1\right)^2\)
f) \(x^3-3x^2+3x-1=\left(x-1\right)^3\)
g) \(x^3+6x^2+12x+8=\left(x+2\right)^3\)
h) \(x^3+1-x^2-x=\left(x+1\right)\left(x^2-x+1\right)-x\left(x+1\right)=\left(x+1\right)\left(x^2-2x+1\right)=\left(x+1\right)\left(x-1\right)^2\)
l) \(\left(x+y\right)^2-x^3-y^3=\left(x+y\right)^3-\left(x+y\right)\left(x^2-xy+y^2\right)=\left(x+y\right)\left(x^2+2xy+y^2-x^2+xy-y^2\right)=3xy\left(x+y\right)\)
Bài 4:
a: Ta có: \(4x^2-49=0\)
\(\Leftrightarrow\left(2x-7\right)\left(2x+7\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{2}\\x=-\dfrac{7}{2}\end{matrix}\right.\)
b: Ta có: \(x^2+36=12x\)
\(\Leftrightarrow x^2-12x+36=0\)
\(\Leftrightarrow\left(x-6\right)^2=0\)
\(\Leftrightarrow x-6=0\)
hay x=6
c: Ta có: \(\dfrac{1}{16}x^2-x+4=0\)
\(\Leftrightarrow\left(\dfrac{1}{4}x-2\right)^2=0\)
\(\Leftrightarrow x\cdot\dfrac{1}{4}-2=0\)
\(\Leftrightarrow x\cdot\dfrac{1}{4}=2\)
hay x=8
d: Ta có: \(x^3-3\cdot x^2\cdot\sqrt{3}+9x-3\sqrt{3}=0\)
\(\Leftrightarrow\left(x-\sqrt{3}\right)^3=0\)
\(\Leftrightarrow x-\sqrt{3}=0\)
hay \(x=\sqrt{3}\)
Bài 3:
a: \(x^4+2x^2+1=\left(x^2+1\right)^2\)
b: \(4x^2-12xy+9y^2=\left(2x-3y\right)^2\)
c: \(-x^2-2xy-y^2=-\left(x+y\right)^2\)
e \(\left(x+y\right)^2-2\left(x+y\right)+1=\left(x+y-1\right)^2\)
f: \(x^3-3x^2+3x-1=\left(x-1\right)^3\)