1:
ΔABC vuông tại A có AH là đường cao
nên \(AB^2=BH\cdot BC\)
=>\(BC=\dfrac{9^2}{5.4}=15\left(cm\right)\)
ΔABC vuông tại A
=>\(BC^2=AB^2+AC^2\)
=>\(AC=\sqrt{15^2-9^2}=12\left(cm\right)\)
BC=BH+CH
=>CH=BC-BH=15-5,4=9,6cm
Xét ΔABC vuông tại A có AH là đường cao
nên \(AH\cdot BC=AB\cdot AC\)
=>\(AH\cdot15=9\cdot12=108\)
=>AH=7,2(cm)
Xét tứ giác AEHF có
\(\widehat{AEH}=\widehat{AFH}=\widehat{FAE}=90^0\)
=>AEHF là hình chữ nhật
=>AH=EF=7,2(cm)
Xét ΔABC vuông tại A có
\(sinABC=\dfrac{AC}{BC}=\dfrac{4}{5}\)
nên \(\widehat{ABC}\simeq53^0\)
=>\(\widehat{HAC}=\widehat{ABC}\simeq53^0\)
2:
ΔHAB vuông tại H có HE là đường cao
nên \(HE\cdot BA=HA\cdot HB\)
=>\(HE\cdot9=5.4\cdot7.2\)
=>\(HE=5.4\cdot0.8=4.32\left(cm\right)\)
ΔHAC vuông tại H có HF là đường cao
nên \(HF\cdot AC=HA\cdot HC\)
=>\(HF\cdot12=9.6\cdot7.2\)
=>\(HF=0.8\cdot7.2=5.76\left(cm\right)\)
\(S_{AEHF}=HE\cdot HF=5.76\cdot4.32=24.8832\left(cm^2\right)\)
\(S_{AEF}=\dfrac{1}{2}\cdot AE\cdot AF=\dfrac{1}{2}\cdot5.76\cdot4.32=12.4416\left(cm^2\right)\)
3: ΔHAB vuông tại H có HE là đường cao
nên \(AE\cdot AB=AH^2\left(1\right)\)
ΔHAC vuông tại H có FH là đường cao
nên \(AF\cdot AC=AH^2\left(2\right)\)
Từ (1),(2) suy ra \(AE\cdot AB=AF\cdot AC\)
4: \(AB\cdot cosB+AC\cdot cosC\)
\(=AB\cdot\dfrac{AB}{BC}+AC\cdot\dfrac{AC}{BC}\)
\(=\dfrac{AB^2+AC^2}{BC}=\dfrac{BC^2}{BC}=BC\)
6:
Xét tứ giác AEHF có
\(\widehat{AEH}=\widehat{AFH}=\widehat{FAE}=90^0\)
=>AEHF là hình chữ nhật