Đặt: \(A=1+\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+\dfrac{1}{16}+...+\dfrac{1}{512}+\dfrac{1}{1024}\)
\(\Rightarrow\dfrac{4}{2}A=\dfrac{4}{2}\left(1+\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{1024}\right)\)
\(\Rightarrow2A=2+1+\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{512}\)
\(\Rightarrow2A-A=\left(3+\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+...+\dfrac{1}{512}\right)-\left(1+\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+...+\dfrac{1}{1024}\right)\)
\(\Rightarrow A=\left(\dfrac{1}{2}-\dfrac{1}{2}\right)+\left(\dfrac{1}{4}-\dfrac{1}{4}\right)+...+\left(3-1-\dfrac{1}{1024}\right)\)
\(\Rightarrow A=2-\dfrac{1}{1024}\)
\(\Rightarrow A=\dfrac{2047}{1024}\)
1+(1)/(2)+(1)/(4)+(1)/(8)+...+(1)/(512)+(1)/(1024)
A x 2 = 1 - ( 1/2 + 1/4 + 1/8 + 1/16 + ..... + 1/512 + 1/1024 ) - 1/1024
A x 2 = 1 - 1/1024 + A
A x 2 - A = 1 - 1/1024
A = 1 - 1/1024
A = 1023 /1024