Bài 1:
Ta có: \(\left\{\begin{matrix} x+4=(y-2)^2=y^2-4y+4\\ y+4=(x-2)^2=x^2-4x+4\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} x=y^2-4y(1)\\ y=x^2-4x(2)\end{matrix}\right. \)
Lấy $(2)-(1)\Rightarrow x^2-4x-(y^2-4y)=y-x$
\(\Leftrightarrow (x^2-y^2)-(4x-4y)+(x-y)=0\)
\(\Leftrightarrow (x-y)(x+y)-3(x-y)=0\Leftrightarrow (x-y)(x+y-3)=0\)
Vì $x\neq y$ nên $x-y\neq 0$. Do đó $x+y-3=0\Rightarrow x+y=3$
Lấy $(1)+(2)\Rightarrow$ \(x^2+y^2=5(x+y)=5.3=15\)
Bài 2:
\(P=(2a+2b)^2-2c(2a+2b)+c^2+(2b+2c)^2-2a(2b+2c)+a^2+(2c+2a)^2-2b(2c+2a)+b^2\)
\(=4(a+b)^2+4(b+c)^2+4(c+a)^2+a^2+b^2+c^2-8(ab+bc+ac)\)
\(=4(a^2+2ab+b^2)+4(b^2+2bc+c^2)+4(c^2+2ca+a^2)+a^2+b^2+c^2-8(ab+bc+ac)\)
\(=9(a^2+b^2+c^2)+8(ab+bc+ac)-8(ab+bc+ac)\)
\(=9(a^2+b^2+c^2)=9.9=81\)