Gọi \(A\left(a;\dfrac{-2a+5}{3}\right)\)
Do M là trung điểm AC \(\Rightarrow\left\{{}\begin{matrix}x_C=2x_M-x_A=4-a\\y_C=2y_M-y_A=\dfrac{2a+1}{3}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AH}=\left(-a;\dfrac{2a-14}{3}\right)\\\overrightarrow{CH}=\left(a-4;\dfrac{-2a-10}{3}\right)\end{matrix}\right.\)
\(AH\perp CH\Rightarrow\overrightarrow{AH}.\overrightarrow{CH}=0\)
\(\Rightarrow-a\left(a-4\right)+\left(\dfrac{2a-14}{3}\right)\left(\dfrac{-2a-10}{3}\right)=0\)
\(\Leftrightarrow-13a^2+44a+140=0\Rightarrow\left[{}\begin{matrix}a=-2\Rightarrow x_C=6\\a=\dfrac{70}{13}\Rightarrow x_C=-\dfrac{18}{13}< 0\left(loại\right)\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}A\left(-2;3\right)\\C\left(6;-1\right)\end{matrix}\right.\) \(\Rightarrow\overrightarrow{AH}=\left(2;-6\right)\)
a. Phương trình BC:
\(1\left(x-6\right)-3\left(y+1\right)=0\Leftrightarrow x-3y-9=0\)
b.
\(\overrightarrow{CE}=\left(17;-1\right)\) \(\Rightarrow\) phương trình CE:
\(1\left(x-6\right)+17\left(y+1\right)=0\Leftrightarrow x+17y+11=0\)
c.
B thuộc BC nên tọa độ có dạng \(B\left(3b+9;b\right)\)
Gọi N là trung điểm AB \(\Rightarrow N\left(\dfrac{3b+7}{2};\dfrac{b+3}{2}\right)\)
N thuộc CE nên:
\(\dfrac{3b+7}{2}+17\left(\dfrac{b+3}{2}\right)+11=0\Rightarrow b=-4\)
\(\Rightarrow N\left(-\dfrac{5}{2};-\dfrac{1}{2}\right)\)
d.
\(B\left(-3;-4\right)\Rightarrow\overrightarrow{BC}=\left(9;-3\right)\Rightarrow BC=\sqrt{9^2+\left(-3\right)^2}=3\sqrt{10}\)