Câu 4 đề 1:
Biến đổi miền D: \(x^2+y^2\le2x\Leftrightarrow x^2-2x+1+y^2\le1\)
\(\Leftrightarrow\left(x-1\right)^2+y^2\le1\)
Đặt \(\left\{{}\begin{matrix}x-1=r.cos\varphi\\y=r.sin\varphi\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=1+r.cos\varphi\\y=r.sin\varphi\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}0\le r\le1\\0\le\varphi\le2\pi\end{matrix}\right.\)
\(I=\int\limits^{2\pi}_0d\varphi\int\limits^1_0\left(2+r.cos\varphi\right).rdr=\int\limits^{2\pi}_0d\varphi\int\limits^1_0\left(2r+r^2.cos\varphi\right)dr\)
\(=\int\limits^{2\pi}_0d\varphi.\left(r^2+\dfrac{r^3}{3}cos\varphi\right)|^1_0=\int\limits^{2\pi}_0\left(1+\dfrac{1}{3}cos\varphi\right)d\varphi=2\pi\)
Câu 4 đề 2: sao câu này người ta ko cho biết chiều tính tích phân nhỉ? Coi như tính theo chiều dương đi.
\(\left\{{}\begin{matrix}P=x^2+xy\\Q=x+2xy\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}P'_y=x\\Q'_x=2y+1\end{matrix}\right.\)
Miền lấy tích phân là miền kín, áp dụng định lý Green:
\(I=\int\limits\int\limits^{ }_D\left(Q'_x-P'_y\right)dxdy=\int\limits\int\limits^{ }_D\left(2y-x+1\right)dxdy\)
Pt AC có dạng \(x=1\) và pt \(BC\) có dạng \(x=3-y\)
Chiếu lên Oy \(\Rightarrow\left\{{}\begin{matrix}0\le y\le2\\1\le x\le3-y\end{matrix}\right.\)
\(\Rightarrow I=\int\limits^2_0dy\int\limits^{3-y}_1\left(2y-x+1\right)dx\)
\(=\int\limits^2_0dy\left(\left(2y+1\right)x-\dfrac{x^2}{2}\right)|^{3-y}_1\)
\(=\int\limits^2_0\left(-\dfrac{5}{2}y^2+6y-2\right)dy=\dfrac{4}{3}\)