`@` `\text {Ans}`
`\downarrow`
`a)`
`2^2 * 16 \ge 2^x \ge 4^2`
`=> 2^2 * 2^4 \ge 2^x \ge 2^4`
`=> 2^6 \ge 2^x \ge 2^4`
`=> x \in {4; 5; 6}`
`b)`
`9*27 \le 3^x \le 243`
`=> 3^2 * 3^3 \le 3^x \le 3^5`
`=> 3^5 \le 3^x \le 3^5`
`=> x = 5`
`c)`
`2 * (x - 1/2)^2 - 1/8 = 0`
`=> 2* (x - 1/2)^2 = 1/8`
`=> (x - 1/2)^2 = 1/8 \div 2`
`=> (x-1/2)^2 = 1/16`
`=> (x - 1/2)^2 = (+- 1/4)^2`
`=>`\(\left[{}\begin{matrix}x-\dfrac{1}{2}=\dfrac{1}{4}\\x-\dfrac{1}{2}=-\dfrac{1}{4}\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x=\dfrac{1}{4}+\dfrac{1}{2}\\x=\dfrac{1}{2}-\dfrac{1}{4}\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x=\dfrac{3}{4}\\x=\dfrac{1}{4}\end{matrix}\right.\)
Vậy, `x \in {1/4; 3/4}.`