\(A=\frac{x}{\sqrt{x}-1}+\frac{\sqrt{x}-2x}{x-\sqrt{x}}\)
\(=\frac{x}{\sqrt{x}-1}+\frac{1-2\sqrt{x}}{\sqrt{x}-1}=\frac{x-2\sqrt{x}+1}{\sqrt{x}-1}=\frac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}-1}=\sqrt{x}-1\)
\(A=\dfrac{x}{\sqrt{x}-1}+\dfrac{\sqrt{x}\left(1-2\sqrt{x}\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}=\dfrac{x}{\sqrt{x}-1}+\dfrac{1-2\sqrt{x}}{\sqrt{x}-1}\)
\(=\dfrac{x-2\sqrt{x}+1}{\sqrt{x}-1}=\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}-1}=\sqrt{x}-1\)