Tâm đối xứng là O
Trục đối xứng là MP và NQ
Tâm đối xứng là O
Trục đối xứng là MP và NQ
1.Chứng minh rằng giao điểm của 2 đường chéo là tâm đối xứng của hình bình hành. Hãy chỉ ra tâm đối xứng của hình chữ nhật, hình thoi và hình vuông
2. Cho hình bình hành ABCD có I, K lần lượt là trung điểm các cạnh AB, CD biết rằng IC là phân giác ∠BCD và ID là phân giác ∠CDA.
a. Chứng minh BC=BI=KD=DA
b. KA cắt ID tại M. KB cắt IC tại N. Tứ giác IMKN là hình gì? Giải thích.
3. Cho hình bình hành ABCD, M, N là trung điểm cạnh AD, BD. Đường chéo AC cắt BM ở P và DN ở Q.
a. Chứng minh AP=PQ=QC
b. Chứng minh MPNQ là hình bình hành
c. Hình bình hành ABCD thỏa mãn điều kiện gì để MPNQ là hình chữ nhật, hình thoi, hình vuông?
Cho hình bình hành ABCD, O là giao điểm của hai đường chéo. Gọi M, N lần lượt là trung điểm OB, OD
a) Chứng minh AMCN là hình bình hành
b) Hình bình hành ABCD cần có thêm điều kiện gì để AMCN là hình chữ nhật
c) AN cắt CD tại E, CM cắt AB tại tâm O. Chứng minh rằng E và F đối xứng với nhau qua tâm O
Cho hình chữ nhật ABCD. Gọi O là giao điểm của hai đường chéo. Lấy M tùy ý trên CD, OM cắt AB tại N.
a) Chứng minh: M và N đối xứng nhau qua Q.
b) Kẻ NF//AC (F ∈ BC), ME//AC (E ∈ AD) Chứng minh NFME là hình bình hành
c) Chứng minh: MN, EF, AC, BD đồng quy.
Cho hình chữ nhật ABCD với tâm đối xứng O. Từ các đỉnh A, C kẻ các đường vuông góc với đường chéo BD. Từ các đỉnh B, D kẻ các đường vuông góc với đường chéo AC, các đường vuông góc từ đỉnh A và B cắt nhau tại Q và các đường vuông góc từ đỉnh C và D cắt nhau tại N. Gọi M và P lần lượt là giao điểm của AQ với DN và BQ với CN. Chứng minh rằng:
a) M và P đối xứng với nhau qua tâm O.
b) Tứ giác MNPQ là hình thoi.
Cho hình chữ nhật ABCD với tâm đối xứng O. Từ các đỉnh A, C kẻ các đường vuông góc với đường chéo BD. Từ các đỉnh B, D kẻ các đường vuông góc với đường chéo AC, các đường vuông góc từ đỉnh A và B cắt nhau tại Q và các đường vuông góc từ đỉnh C và D cắt nhau tại N. Gọi M và P lần lượt là giao điểm của AQ với DN và BQ với CN. Chứng minh rằng:
a) M và P đối xứng với nhau qua tâm O.
b) Tứ giác MNPQ là hình thoi.
cho hình chữ nhật ABCD có hai đường chéo BD và AC cắt nhau tại O, lấy điểm P tùy ý trên đường chéo BD. Gọi M là điểm đối xứng nhau với C qua P .
a, Chứng minh AM // BD
b, Gọi E và F lần lượt là hình chiếu của M trên AD và AB . Chứng minh tứ giác AEMF là hình chữ nhật
c, Chứng minh EF//AC
d, Chứng minh 3 điểm F,E,P thẳng hàng
Cho tứ giác ABCD có hai đường chéo AC và BD vuông góc với nhau. Gọi M, N, P, Q lần lượt là trung điểm của các cạnh AB, BC, CD, DA. C/minh tứ giác MNPQ là hình chữ nhật
1. Cho tứ giác ABCD. Gọi O là giao điểm của 2 đường chéo (không vuông góc), I và K lần lượt là trung điểm của BC và CD. Gọi M và N theo thứ tự là điểm đối xứng của điểm O qua tâm I và K.
a) C/m rằng tứ giác BMND là hình bình hành.
b) Với điều kiện nào của 2 đường chéo AC và BD thì tứ giác BMND là hình chữ nhật
c) C/m 3 điểm M,C,N thẳng hàng
Nhờ các bạn giải dùm mình câu cuối 3 bài này nhé! Thanks các bạn!
Bài 1: Cho Hình chữ nhật ABCD có O là giao điểm hai đường chéo, E nằm giữa O và B. Điểm F đối xứng với A qua E, I là trung điểm của CF.
a) CM: OEFC là hình thang
b) CM: OEIC là hình bình hành.
c) Gọi H và K lần lượt là hình chiếu của F lên BC và CD. CM: CHFK là hình chữ nhật.
d) CM: E, H, K thẳng hàng. (nhờ mọi người làm giúp câu này)
Bài 2: Cho tam giác ABC vuông tại A (AB>AC). Đường cao AH, gọi M là trung điểm AC. Trên tia đối của tia MH lấy điểm D sao cho MD=MH.
a) CM: ADCH là hình chữ nhật.
b) Gọi E là điểm đối xứng với C qua H. CM: ADHE là hình bình hành.
c) Vẽ EK vuông góc với AB tại K. I là trung điểm AK. CM: KE // IH.
d) Gọi N là trung điểm BE. CM: HK vuông góc với KN. (nhờ mọi người làm giúp câu này)
Bài 3: Cho tam giác ABC nhọn, AH là đường cao. Qua A vẽ đường thẳng vuông góc với AH và qua B vẽ đường thẳng vuông góc với BC, hai đường này cắt nhau tại E.
a) Vẽ đường cao BK của tam giác ABC cắt AH tại N. Gọi F là điểm đối xứng của B qua K mà M là điểm đối xứng của A qua K. CM ABMF là hình thoi.
b) Gọi D và I lần lượt là trung điểm của AC và BC. hai đường trung trực của AC và BC cắt nhau tại O. Gọi L là điểm đối xứng với A qua O. CM: LC // BN.
c) CM: N, I, L thẳng hàng. (nhờ mọi người làm giúp câu này)
Cho tứ giác ABCD có 2 đường chéo AC và BD vuông góc với nhau tại O. Gọi M, N, P, Q lần lượt là trung điểm của AB, BC, CD, DA. Chứng minh tứ giác MNPQ là hình chữ nhật.
Bạn nào biết làm thì giúp mình nhé! Thanks nhiều!