a) \(\left\{{}\begin{matrix}\left(m-1\right)x+y=2\\mx+y=m+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(m-1\right)x+y=2\\\left(m-1\right)-mx=2-\left(m+1\right)\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\left(m-1\right)x+y=2\\-x=1-m\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(m-1\right)^2+y=2\\x=m-1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=2-\left(m-1\right)^2\\x=m-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-m^2+2m+1\\x=m-1\end{matrix}\right.\)
\(2x+y=2\left(m-1\right)+\left(-m^2+2m+1\right)=2m-2-m^2+2m+1=-m^2+4m-1=-\left(m^2-4m+4\right)+3=-\left(m-2\right)^2+3\le3\)
Dấu "=" xảy ra \(\Leftrightarrow m=2\)
\(a,HPT\Leftrightarrow\left\{{}\begin{matrix}mx-x+y=2\\mx+y=m+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}mx+y=x+2\\mx+y=m+1\end{matrix}\right.\\ \Leftrightarrow x+2=m+1\Leftrightarrow x=m-1\\ \Leftrightarrow\left(m-1\right)^2+y=2\\ \Leftrightarrow y=2-\left(m-1\right)^2\)
\(2x+y\le3\\ \Leftrightarrow2m-2+2-m^2+2m-1-3\le0\\ \Leftrightarrow-m^2+4m-4\le0\\ \Leftrightarrow-\left(m-2\right)^2\le0\left(luôn.đúng\right)\)
Vậy ta được đpcm
b, \(x+y=-4\Leftrightarrow x=-4-y\Leftrightarrow\left\{{}\begin{matrix}m-1=-4-y\left(1\right)\\y=2-\left(m-1\right)^2\left(2\right)\end{matrix}\right.\)
Thế (2) vào (1)
\(\Leftrightarrow m-1=-4-2+\left(m-1\right)^2\\ \Leftrightarrow m-1=-6+m^2-2m+1\\ \Leftrightarrow m^2-3m-4=0\\ \Leftrightarrow\left[{}\begin{matrix}m=-1\\m=4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}y=2-4=-2\\y=2-9=-7\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=3\end{matrix}\right.\)
Vậy \(\left(x;y\right)=\left\{\left(-2;-2\right);\left(3;-7\right)\right\}\)