Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
qphuongg

giúp e với ạ e cần gấp


subjects
31 tháng 8 lúc 16:52

theo đề ta có: \(x+y+z=0\Rightarrow\left(x+y+z\right)^2=0\)

\(\Rightarrow x^2+y^2+z^2+2\cdot\left(xy+yz+zx\right)=0\)

\(\Rightarrow x^2+y^2+z^2=-2\left(xy+yz+xz\right)\left(1\right)\)

ta co: \(x^3+y^3+z^3-3xyz=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)\)

mà x + y + z = 0

\(\Rightarrow x^3+y^3+z^3-3xyz=0\Rightarrow x^3+y^3+z^3=3xyz\left(2\right)\)

a. VT = \(\left(x^2+y^2+z^2\right)^2=x^4+y^4+z^4+2\cdot\left(x^2y^2+y^2z^2+x^2z^2\right)\)

ta có: \(\left(xy+yz+zx\right)^2=\left(x^2y^2+y^2z^2+x^2z^2\right)+2xyz\cdot\left(x+y+z\right)\)

vì x+y+z=0 nên: \(\left(xy+yz+zx\right)^2=\left(x^2y^2+y^2z^2+x^2z^2\right)\)

từ (1) ta có: \(\left(x^2+y^2+z^2\right)^2=\left\lbrack-2\left(xy+yz+zx\right)^{}\right\rbrack^2\) (*)

\(=4\cdot\left(xy+yz+zx\right)^2=4\cdot\left(x^2y^2+y^2z^2+z^2x^2\right)\)

ta có: \(4\cdot\left(x^2y^2+y^2z^2+z^2x^2\right)=x^4+y^4+z^4+2\cdot\left(x^2y^2+y^2z^2+z^2x^2\right)\)

mà: \(2\cdot\left(x^2y^2+y^2z^2+z^2x^2\right)=x^4+y^4+z^4\)

thay vào (*) ta được:

\(\left(x^2+y^2+z^2\right)^2=\left(x^4+y^4+z^4\right)+2\cdot\left(x^2y^2+y^2z^2+z^2x^2\right)\)

\(=x^4+y^4+z^4+x^4+y^4+z^4=2\cdot\left(x^4+y^4+z^4\right)=VP\)

⇒ đpcm

b. \(VT=5\cdot\left(x^3+y^3+z^3\right)\left(x^2+y^2+z^2\right)\)

\(=5\cdot\left(3xyz\right)\left(x^2+y^2+z^2\right)\)

\(=15xyz\cdot\left(x^2+y^2+z^2\right)\) (3)

\(x+y+z=0\Rightarrow x+y=-z\)

\(x^5+y^5+z^5=x^5+y^5+\left\lbrack-\left(x+y\right)\right\rbrack^5=x^5+y^5-\left(x+y\right)^5\)

\(=x^5+y^5-\left(x^5+5y^4+10x^3y^2+10x^2y^3+5xy^4+y^5\right)\)

\(=-5x^4y-10x^3y^2-10x^2y^3-5xy^4\)

\(=-5xy\left(x^3+2x^2y+2xy^2+y^3\right)\)

\(=-5xy\left\lbrack x^3+y^3+2xy\left(x+y\right)\right\rbrack\)

\(=-5xy\left\lbrack\left(x+y\right)^3-3xy\left(x+Y\right)+2xy\left(x+y\right)\right\rbrack\)

\(=-5xy\left\lbrack\left(x+Y\right)^3-xy\left(x+y\right)\right\rbrack\)

\(=-5xy\left(x+Y\right)\left\lbrack\left(x+y\right)^2-xy\right\rbrack\)

vì x+y=-z nên ta có:

\(x^5+y^5+z^5=-5xy\left(-z\right)\left\lbrack\left(-z\right)^2-xy\right\rbrack=5xyz\left(x^2-zy\right)\)

mặt khác \(x+y=-z\Rightarrow\left(x+y\right)^2=z^2\Rightarrow x^2+y^2+2xy=z^2\)

\(x^2+y^2+z^2=x^2+y^2+\left(x+y\right)^2\)

\(=x^2+y^2+x^2+2xy+y^2=2\cdot\left(x^2+xy+y^2\right)\)

\(z^2-xy=\left(x+y\right)^2-xy=x^2+2xy+y^2-xy=x^2+xy+y^2\)

vậy \(x^5+y^5+z^5=5xyz\cdot\left(x^2+xy+y^2\right)=\frac52xyz\left(x^2+y^2+z^2\right)\)

\(\Rightarrow2\cdot\left(x^5+y^5+z^5\right)=5xyz\left(x^2+y^2+z^2\right)\)

\(6\cdot\left(x^5+y^5+z^5\right)=15xyz\left(x^2+y^2+z^2\right)\) (4)

từ (3) và (4) ⇒ VT = VP

subjects
31 tháng 8 lúc 17:00

câu c: phần này đã được chứng minh nằm trong câu b nha bạn


Các câu hỏi tương tự
Bủh Bủh Dảk Dảk Lmao
Xem chi tiết
Chu Dat
Xem chi tiết
Bủh Bủh Dảk Dảk Lmao
Xem chi tiết
Minh Anh Doan
Xem chi tiết
Mina Anh
Xem chi tiết
hà vy
Xem chi tiết
Ngọc Linh Hoàng
Xem chi tiết
Minh Anh Doan
Xem chi tiết
Linh Chi Linh
Xem chi tiết
Ngọc Linh Hoàng
Xem chi tiết