Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Ngọc Anh

Giải và biện luận các phương trình sau

a)

{mx+(m-1)y=m+1

 {2x+my=2

b) {mx+(m-2)y=5

{(m+2)x+(m+1)y=2

c){(m-1)x+2y=3m-1

    {(m+2)x-y=1-m

Nguyễn Lê Phước Thịnh
28 tháng 1 2023 lúc 19:47

a

Để hệ có nghiệm duy nhất thì \(\dfrac{m-1}{m}< >\dfrac{m}{2}\)

=>m^2<>2m-2

=>m^2-2m+2<>0(luôn đúng)

Để hệ có vô sô nghiệm thì \(\dfrac{m}{2}=\dfrac{m-1}{m}=\dfrac{m+1}{2}\)

=>2m=2m+2 và 2m-2=m^2+m

=>m^2+m-2m+2=0 và 0m=2(loại)

Để hệ vô nghiệm thì \(\dfrac{m}{2}=\dfrac{m-1}{m}< >\dfrac{m+1}{2}\)

=>m^2=2m-2 và 2m<>2m+2

=>0m<>2 và m^2-2m+2=0(loại)

b: Để hệ có nghiệm duy nhất thì \(\dfrac{m}{m+2}< >\dfrac{m-2}{m+1}\)

=>m^2+m<>m^2-4

=>m<>-4

Để hệ có vô số nghiệm thì \(\dfrac{m}{m+2}=\dfrac{m-2}{m+1}=\dfrac{5}{2}\)

=>m^2+m=m^2-4 và 2m=5m+10

=>m=-4 và m=-10/3(loại)

Để hệ vô nghiệm thì \(\dfrac{m}{m+2}=\dfrac{m-2}{m+1}< >\dfrac{5}{2}\)

=>m=-4 và m<>-10/3(nhận)

c: Để hệ có nghiệm duy nhất thì \(\dfrac{m-1}{m+2}< >-\dfrac{2}{1}=-2\)

=>-2m-4<>m-1

=>-3m<>3

=>m<>-1

Để hệ vô nghiệm thì \(\dfrac{m-1}{m+2}=\dfrac{2}{-1}< >\dfrac{3m-1}{1-m}\)

=>2m+4=-m+1 và 2-2m<>-3m+1

=>3m=-3 và m<>-1

=>m=-1 và m<>-1(loại)

Để hệ có vô số nghiệm thì \(\dfrac{m-1}{m+2}=\dfrac{2}{-1}< >\dfrac{3m-1}{1-m}\)

=>m=-1


Các câu hỏi tương tự
Ngọc Anh
Xem chi tiết
Luyện Hoàng Hương Thảo
Xem chi tiết
Mộc Trà
Xem chi tiết
Kochi
Xem chi tiết
laladada
Xem chi tiết
sơn nguyễn
Xem chi tiết
Le Xuan Mai
Xem chi tiết
Phạm Thị Hằng
Xem chi tiết
Ngọc Ngọc
Xem chi tiết