\(\left\{{}\begin{matrix}2x+y=5\\2x-2y=2\end{matrix}\right.\)
\(\Leftrightarrow3y=3\)
\(\Rightarrow y=1\left(1\right)\)
Thay (1) vào ptr đầu: \(2x+1=5\)
\(\Rightarrow x=2\)
\(\left\{{}\begin{matrix}2x+y=5\\2x-2y=2\end{matrix}\right.\)
\(\Leftrightarrow3y=3\)
\(\Rightarrow y=1\left(1\right)\)
Thay (1) vào ptr đầu: \(2x+1=5\)
\(\Rightarrow x=2\)
Đoán nhận hệ số nghiệm của mỗi hệ phương trình sau và giải thích vì sao:
a) \(\left\{{}\begin{matrix}2x+y=3\\3x-y=1\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}3x+2y=0\\2x-3y=0\end{matrix}\right.\)
c) \(\left\{{}\begin{matrix}3x+0y=6\\2x+y=1\end{matrix}\right.\)
d) \(\left\{{}\begin{matrix}x-y=4\\0x-y=2\end{matrix}\right.\)
e) \(\left\{{}\begin{matrix}x+2y=3\\2x+4y=1\end{matrix}\right.\)
f) \(\left\{{}\begin{matrix}x+y=1\\\dfrac{x}{2}+\dfrac{y}{2}=\dfrac{1}{2}\end{matrix}\right.\)
Mẫu câu a : Ta có: \(\dfrac{a}{a'}\ne\dfrac{b}{b'}\Leftrightarrow\dfrac{2}{3}\ne\dfrac{1}{-1}\), do đó hệ phương trình đã cho có 1 nghiệm duy nhất
giúp mk vs mn ơi! mk đang cần gấp
giải hệ phương trình
a
\(\left\{{}\begin{matrix}x+y=1\\x-y=-5\end{matrix}\right.\)
b.
\(\left\{{}\begin{matrix}2x+2y=5\\x-2y=1\end{matrix}\right.\)
c.
\(\left\{{}\begin{matrix}2x+3y=5\\3x-2y=1\end{matrix}\right.\)
giải hệ phương trình
1)\(\left\{{}\begin{matrix}3x+4y=11\\2x-y=-11\end{matrix}\right.\) 2)\(\left\{{}\begin{matrix}3x+2y=0\\2x+y=-1\end{matrix}\right.\) 3)\(\left\{{}\begin{matrix}3x+\dfrac{5}{2}y=9\\2x+\dfrac{1}{3}y=2\end{matrix}\right.\)
4)\(\left\{{}\begin{matrix}-x+3y=16\\2x+y=3\end{matrix}\right.\) 5)\(\left\{{}\begin{matrix}\dfrac{-3}{x-y}+\dfrac{5}{2x+y}=-2\\\dfrac{4}{x-y}-\dfrac{10}{2x+y}=2\end{matrix}\right.\) 6)\(\left\{{}\begin{matrix}\dfrac{1}{x}-\dfrac{1}{y}=1\\\dfrac{3}{x}+\dfrac{4}{y}=5\end{matrix}\right.\)
Giải hệ phương trình: \(\left\{{}\begin{matrix}2x+5\left|y-1\right|=2\\x-2\left|y-1\right|=1\end{matrix}\right.\)
giải hệ phương trình
a) \(\left\{{}\begin{matrix}x+2y=2\\-2x+y=1\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}3x-2y=4\\2x+y=5\end{matrix}\right.\)
c) \(\left\{{}\begin{matrix}2y-x=2\\2x-y=-1\end{matrix}\right.\)
giúp tui giải bài này với tui c.ơn trước
Giải hệ phương trình \(\left\{{}\begin{matrix}6\left(x+y\right)=8+2x-3y\\5\left(y-x\right)=5+3x+2y\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\left(x-1\right)\left(y-2\right)=\left(x+1\right)\left(y-3\right)\\\left(x-5\right)\left(y+4\right)=\left(x-4\right)\left(y+1\right)\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\left(x-2\right)\left(y+1\right)=xy
\\\left(x+8\right)\left(y-2\right)=xy\end{matrix}\right.\) GIÚP MÌNH VỚI Ạ MÌNH CẢM ƠN
GIẢI HỆ PHƯƠNG TRÌNH: \(\left\{{}\begin{matrix}\dfrac{2x-y}{3}=x+y+1\\X-3y-5=\dfrac{2x-y}{2}\end{matrix}\right.\)
Giải hệ phương trình sau:
a. \(\left\{{}\begin{matrix}\dfrac{x+2}{y}=\dfrac{x+1}{y-2}\\\dfrac{5x+1}{5x-2}=\dfrac{y-2}{y+2}\end{matrix}\right.\)
b. \(\left\{{}\begin{matrix}2x+\left|y\right|=4\\4x-3y=1\end{matrix}\right.\)
Giải hệ phương trình \(\left\{{}\begin{matrix}x+\dfrac{2}{|y-1|}=5\\2x-\dfrac{3}{|y-1|}=0\end{matrix}\right.\)