\(\frac{400}{x}=\frac{100}{x}+\frac{300}{x}+10+\)\(1\)
<=> \(\frac{400-100-300}{x}=11\)
<=> \(\frac{0}{x}=11\)
\(\frac{400}{x}=\frac{100}{x}+\frac{300}{x}+10+\)\(1\)
<=> \(\frac{400-100-300}{x}=11\)
<=> \(\frac{0}{x}=11\)
giải pt
400/x=100/x + 300/x+10 + 1
Giải Phương Trình Sau:
\(\dfrac{x-342}{15}+\dfrac{x-323}{17}+\dfrac{x-300}{19}+\dfrac{x-273}{21}=10\)
Giải phương trình sau:
a, ( x 2 - x + 1) + ( x 2 - 2 x + 3) + ( x 2 - 3 x + 5) + ... + ( x 2 - 100 x + 199) =300
Đề: Giải
a)\(\frac{3x-2}{9x+1}<\frac{1}{3}\)
b)\(\frac{x-342}{15}+\frac{x-323}{17}+\frac{x-300}{19}+\frac{x-273}{21}=10\)
Tìm x
a) (x-1)^10 + (x-2)^10 =1
b) (x+3)^100 + (x+4)^100 = 1/3
Tìm x
a) (x-1)^10 + (x-2)^10 =1
b) (x+3)^100 + (x+4)^100 = 1/3
Tìm x
a) (x-1)^10 + (x-2)^10 =1
b) (x+3)^100 + (x+4)^100 = 1/3
Tìm x
a) (x-1)^10 + (x-2)^10 =1
b) (x+3)^100 + (x+4)^100 = 1/3
Tìm x
a) (x-1)^10 + (x+2)^10 =1
b) (x+3)^100 + (x+4)^100 = 1/3