\(\Rightarrow-\left(x+5\right)-\sqrt{x+5}+x^2-3x+2=0\)
Đặt a = \(\sqrt{x+5}\left(a\ge0\right)\)
\(\Rightarrow-a^2-a+x^2-3x+2=0\)
Có: \(\Delta=\left(-1\right)^2-4.\left(-1\right).\left(x^2-3x+2\right)\) \(=4x^2-12x+9=\left(2x-3\right)^2\)
\(\Rightarrow a_1=\frac{1+2x-3}{-2}=-x+1\) \(a_2=\frac{1-2x+3}{-2}=x-2\)
+) Với a = -x + 1 => \(\sqrt{x+5}=-x+1\) .............................
+) Với a = x - 2 => \(\sqrt{x+5}=x-2\) ...............................
Tự giải ra