\(\sqrt[3]{x+1}+\sqrt[3]{x-1}=\sqrt[3]{5x}\)
<=> \(\left(\sqrt[3]{x+1}+\sqrt[3]{x-1}\right)^3=5x\)
<=> \(\left(2x\right)^3-3\left(x+1\right)\left(x-1\right)2x=5x\)
<=> \(8x^3-6x\left(x^2-1\right)=5x\)
<=> \(8x^3-6x^3+6x-5x=0\)
<=> \(2x^3+x=0\)
<=> \(x\left(2x^2+1\right)=0\)
<=>\(\orbr{\begin{cases}x=0\\2x^2+1=0\end{cases}}\)
Mà \(2x^2\ge0\)=> \(2x^2+1\ge1>0\)
<=> x=0
\(S=\left\{0\right\}\)