\(\sqrt{x-1}+\sqrt{x^3+x^2+x+1}=1+\sqrt{x^4-1}\)
Đk: tự làm :v
\(pt\Leftrightarrow\sqrt{x-1}-1+\sqrt{x^3+x^2+x+1}-\sqrt{15}=\sqrt{x^4-1}-\sqrt{15}\)
\(\Leftrightarrow\frac{x-1-1}{\sqrt{x-1}+1}+\frac{x^3+x^2+x+1-15}{\sqrt{x^3+x^2+x+1}+\sqrt{15}}=\frac{x^4-1-15}{\sqrt{x^4-1}+\sqrt{15}}\)
\(\Leftrightarrow\frac{x-2}{\sqrt{x-1}+1}+\frac{x^3+x^2+x-14}{\sqrt{x^3+x^2+x+1}+\sqrt{15}}-\frac{x^4-16}{\sqrt{x^4-1}+\sqrt{15}}=0\)
\(\Leftrightarrow\frac{x-2}{\sqrt{x-1}+1}+\frac{\left(x-2\right)\left(x^2+3x+7\right)}{\sqrt{x^3+x^2+x+1}+\sqrt{15}}-\frac{\left(x-2\right)\left(x+2\right)\left(x^2+4\right)}{\sqrt{x^4-1}+\sqrt{15}}=0\)
\(\Leftrightarrow\left(x-2\right)\left(\frac{1}{\sqrt{x-1}+1}+\frac{x^2+3x+7}{\sqrt{x^3+x^2+x+1}+\sqrt{15}}-\frac{\left(x+2\right)\left(x^2+4\right)}{\sqrt{x^4-1}+\sqrt{15}}\right)=0\)
Dễ thấy: \(\frac{1}{\sqrt{x-1}+1}+\frac{x^2+3x+7}{\sqrt{x^3+x^2+x+1}+\sqrt{15}}-\frac{\left(x+2\right)\left(x^2+4\right)}{\sqrt{x^4-1}+\sqrt{15}}>0\)
\(\Rightarrow x-2=0\Rightarrow x=2\)
bn ơi có cách giải khác nhanh hơn ko bn giải cho mình cách đặt ẩn phụ vs