Giải pt : \(10\sqrt[3]{x^3+8}=3\left(x^2-x+6\right)\)
giải bất pt
\(\frac{\sqrt{x^2-x-6}+3\sqrt{x}-\sqrt{2\left(x^2+5x+3\right)}}{x+3-\sqrt{2\left(x^2+10\right)}}< =0\)
Giải pt \(\left(\sqrt{x+3}+\sqrt{6-x}\right)\left(6\sqrt{2x+6}-2x-13\right)=6\sqrt{2}\)
Giải pt, hệ pt
a\(\left(\sqrt{x+6}-\sqrt{x-2}\right)\left(1+\sqrt{x^2+4x-12}\right)\)=8
b \(\hept{\begin{cases}x^2+y^2+x+y=18\\x^2+x-y=10\end{cases}}\)
c\(\hept{\begin{cases}x^2+y^2+3=4x\\x^3+12x+y^3=6x^2+9\end{cases}}\)
giải hệ pt \(\int^{x+y+xy=5}_{\left(x+1\right)^3+\left(y+1\right)^3=35}\)
giải pt \(\sqrt{\left(3+2\sqrt{2}\right)^x}+\sqrt{\left(3-2\sqrt{2}\right)^x}=6\)
giải pt \(x^3-8^2+19x-12+\sqrt{x-2}=\left(x-3\right)\sqrt{5-x}+\sqrt{\left(x-2\right)^3}\)
giải pt: \(\sqrt{x+3}+\sqrt{1-x}=2-8\sqrt{\left(x+3\right)\left(x+1\right)}\)
Giải hệ pt:
\(\hept{\begin{cases}3x+10\sqrt{xy}-y=12\\x+\frac{6\left(x^3+y^3\right)}{x^2+xy+y^2}-\sqrt{2\left(x^2+y^2\right)}\end{cases}\le}3\)
\(\left(6\right)\dfrac{3\sqrt{x}}{5\sqrt{x}-1}\le-3\)
\(\left(7\right)\dfrac{8\sqrt{x}+8}{6\sqrt{x}+9}>\dfrac{8}{3}\)
\(\left(8\right)\dfrac{\sqrt{x}-2}{2\sqrt{x}-3}< -4\)
\(\left(9\right)\dfrac{4\sqrt{x}+6}{5\sqrt{x}+7}\le-\dfrac{2}{3}\)
\(\left(10\right)\dfrac{6\sqrt{x}-2}{7\sqrt{x}-1}>-6\)