Bình phương liên tục 2 vế và bạn có một pt bậc 8!!!
Đùa thôi chứ cách giải nghiêm túc nè.
Nhận xét: Đoán trước \(x=5\) là nghiệm nên ta sử dụng lượng liên hợp để có nhân tử \(x-5\) 2 vế.
\(\sqrt{6-x}-1+\sqrt{x-4}-1=x^2-10x+25\)
\(\frac{5-x}{\sqrt{6-x}+1}+\frac{x-5}{\sqrt{x-4}+1}=\left(x-5\right)^2\)
Ta xét \(x\ne5\) ta còn lại \(x-5=\frac{1}{\sqrt{x-4}+1}-\frac{1}{\sqrt{6-x}+1}\)
Ta xét \(x< 5\). Khi đó \(\frac{1}{\sqrt{x-4}+1}-\frac{1}{\sqrt{6-x}+1}>0>x-5\) nên vô nghiệm.
Trường hợp \(x>5\) tương tự. Một bài toán hay!
Vậy thôi chứ bài này ko cần xoắn như Trần...Đạt
Đk:...
\(VT=\left(x^2-10x+25\right)+2=\left(x-5\right)^2+2\ge2\left(1\right)\)
\(VP^2=\left(6-x\right)+\left(x-4\right)+2\sqrt{\left(6-x\right)\left(x-4\right)}\)
\(=2+2\sqrt{\left(6-x\right)\left(x-4\right)}\)
\(\le2+\left(6-x\right)+\left(x-4\right)=4\) (BĐT AM-GM)
\(\Rightarrow VP^2\le4\Rightarrow VP\le2\left(2\right)\)
Từ (1) và (2) ta có dấu "=" xảy ra khi và chỉ khi \(\hept{\begin{cases}x^2-10x+27=2\\\sqrt{6-x}+\sqrt{x-4}=2\end{cases}}\)\(\Leftrightarrow x=5\)
From August, 2020:
đk: \(4\le x\le6\)
Ta có: \(Vt=x^2-10x+27=\left(x-5\right)^2+2\ge2\left(\forall x\right)\)(1)
Áp dụng bất đẳng thức Bunhia ta được:
\(Vp^2=\left(\sqrt{6-x}+\sqrt{x-4}\right)^2\le\left(1^2+1^2\right)\left[\left(\sqrt{6-x}\right)^2+\left(\sqrt{x-4}\right)^2\right]\)
\(=2\left(6-x+x-4\right)=2.2=4\)
=> \(Vp\le2\) (2)
Từ (1) và (2), dấu "=" xảy ra khi: \(\hept{\begin{cases}\left(x-5\right)^2=0\\6-x=x-4\end{cases}\Rightarrow}x=5\)
Vậy x = 5