đk: \(x\ge4\)
\(\Leftrightarrow\sqrt{x}+\sqrt{x+9}=\sqrt{x-1}+\sqrt{x-4}\)
\(\Leftrightarrow2x+9+2\sqrt{x^2+9x}=2x-5+2\sqrt{x^2-5x+4}\)
\(\Leftrightarrow14+2\sqrt{x^2+9x}=2\sqrt{x^2-5x+4}\)
\(\Leftrightarrow7+\sqrt{x^2+9x}=\sqrt{x^2-5x+4}\)
\(\Leftrightarrow49+14\sqrt{x^2+9x}+x^2+9x=x^2-5x+4\)
\(\Leftrightarrow14\sqrt{x^2+9x}=-14x-45\)
\(\Leftrightarrow\hept{\begin{cases}196\left(x^2+9x\right)=196x^2+1260x+2025\\-14x-45\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}504x=2025\\x\le\frac{-45}{14}\end{cases}}\Leftrightarrow x=\frac{225}{56}\) (loại)
=> pt vô nhiệm
ĐK: \(x\ge4\)
PT \(\Leftrightarrow\frac{1}{\sqrt{x}+\sqrt{x-1}}+\frac{13}{\sqrt{x+9}+\sqrt{x+4}}=0\)
Đến đây thấy ngay pt vô nghiệm.
True?