Ta có: \(\sqrt{x-3}.1\ge\frac{x-3+1}{2}=\frac{x-2}{2}\)\(\left(1\right)\)
\(\sqrt{5-x}.1\ge\frac{5-x+1}{2}=\frac{4-x}{2}\)\(\left(2\right)\)
Cộng \(\left(1\right),\left(2\right)\),ta có \(\sqrt{x-3}+\sqrt{5-x}\ge2\)
Mặt khác: \(x^2-8x+18=\left(x-4\right)^2+2\ge2\)
Dấu ''='' xảy ra khi x=4