\(\sqrt[3]{x+1}+\sqrt[3]{x+2}+\sqrt[3]{x+3}=0\)
\(\Leftrightarrow\left(\sqrt[3]{x+1}+1\right)+\sqrt[3]{x+2}+\left(\sqrt[3]{x+3}-1\right)=0\)
\(\Leftrightarrow\frac{x+2}{\sqrt[3]{\left(x+1\right)^2}-\sqrt[3]{x+1}+1}+\frac{x+2}{\sqrt[3]{\left(x+2\right)^4}}+\frac{x+2}{\sqrt[3]{\left(x+3\right)^2}+\sqrt[3]{x+3}+1}\)(liên hợp tử mẫu)
\(\Leftrightarrow\left(x+2\right)\left(\frac{1}{\sqrt[3]{\left(x+1\right)^2}-\sqrt[3]{x+1}+1}+\frac{1}{\sqrt[3]{\left(x+2\right)^4}}+\frac{1}{\sqrt[3]{\left(x+3\right)^2}+\sqrt[3]{x+3}+1}\right)=0\)
\(\Leftrightarrow x+2=0\)( vì biểu thức thứ 2 luôn khác 0)
\(\Leftrightarrow x=-2\)
Vậy...
\(\left(\sqrt[3]{x+1}+\sqrt[3]{x+3}\right)\left(LH\right)=\sqrt[3]{x+2}\left(LH\right)\)
\(\Leftrightarrow2\left(x+2\right)=\sqrt[3]{x+2}\left(Lh\right)\)
=> x=-2 la nghiệm
x khác -2
\(2\sqrt[3]{\left(x+2\right)^2}=-\left(LH\right)\) Vô nghiệm