Giải phương trình
a) \(\sqrt{6x-x^2}+2x^2-12x+15=0\)0
\(^{x^2+2x\sqrt{x-\frac{1}{x}}=}\)3x+1
giải phương trình :
1, \(\sqrt{4-x^2}+2\sqrt[3]{x^4-4x^3+4x^2}=\left(x-1\right)^2+1-\left|x\right|\)
2, \(2x^3+9x^2-6x\left(1+2\sqrt{6x-1}\right)+2\sqrt{6x-1}+8=0\)
3, \(x^3-3x+1=\sqrt{8-3x^2}\)
4, \(\left(4x^2+x-1\right)\sqrt{x^2+x+2}=\left(4x^2+3x+5\right)\sqrt{x^2-1}\)
5, \(\sqrt[3]{3-x^3}=2x^3+x-3\)
6, \(\sqrt[3]{x^2+3x+3}+\sqrt[3]{2x^2+3x+2}=6x^2+12x+8\)
7, \(\frac{x^2+2x-8}{x^2-2x+3}=\left(x+1\right)\left(\sqrt{x+2}-2\right)\)
8, \(\frac{4x-1}{\sqrt{4x-3}}+\frac{11-2x}{\sqrt{5-x}}=\frac{15}{2}\)
9, \(x^2-4x+14+\sqrt{x+4}=2\sqrt{1+12x}+\sqrt{1+\sqrt{1+12x}}\)
Giải phương trình
1.\(\sqrt{2x-3}-\sqrt{5-2x}=3x^2-12x+14\)
2.\(x^2+2x+15=6\sqrt{4x+5}\)
3.\(x^2-5x-8=2\sqrt{x-2}\)
4.\(\sqrt{x+1+\sqrt{x+\frac{3}{4}}}=x+1\)
Giải phương trình bằng phương pháp đánh giá:
1) sqrt(x-2) + sqrt(10-x) = (x2-12x+40)(5x-x2-6)
2) [ sqrt(x+3) + sqrt(15-x) ](x+6)2 = x4 - 72x2 +1302
3) sqrt(2x-3) + sqrt(5-2x) = (3x^2-12x+14)(2x^2-x-3)
Giải các phương trình sau
a)\(x^3+8x=5x^2+4\)
b) \(x^3+3x^2=x+6 \)
c)\(2x+3\sqrt{x}=1\)
4) \(x^4+4x^2+1=3x^3+3x\)
5)\((12x-1)(6x-1)(4x-1)(3x-1)=330\)
Gỉai các phương trình:
a) \(\sqrt{1-6X+9X^2}\) = 9
b) \(\sqrt{2X-3}\) - \(\sqrt{x+1}\) = 0
c) \(\sqrt{9x^2+12x+4}\) - 2= 3x
a)Giải các phương trình sau bằng phương pháp đặt ẩn phụ:
1) \(x^2-3x-3=\frac{3\left(\sqrt[3]{x^3-4x^2+4}-1\right)}{1-x}\) ;2)\(1+\frac{2}{3}\sqrt{x-x^2}=\sqrt{x}+\sqrt{1-x}\)
b) Giải các phương trình sau(không giới hạn phương pháp):
1)\(2\left(1-x\right)\sqrt{x^2+2x-1}=x^2-2x-1\) ; 2)\(\sqrt{2x+4}-2\sqrt{2-x}=\frac{12x-8}{\sqrt{9x^2+16}}\)
3)\(\frac{3x^2+3x-1}{3x+1}=\sqrt{x^2+2x-1}\) ; 4) \(\frac{2x^3+3x^2+11x-8}{3x^2+4x+1}=\sqrt{\frac{10x-8}{x+1}}\)
5)\(13x-17+4\sqrt{x+1}=6\sqrt{x-2}\left(1+2\sqrt{x+1}\right)\);
6)\(x^2+8x+2\left(x+1\right)\sqrt{x+6}=6\sqrt{x+1}\left(\sqrt{x+6}+1\right)+9\)
7)\(x^2+9x+2+4\left(x+1\right)\sqrt{x+4}=\frac{5}{2}\sqrt{x+1}\left(2+\sqrt{x+4}\right)\)
8)\(8x^2-26x-2+5\sqrt{2x^4+5x^3+2x^2+7}\)
GIẢI PHƯƠNG TRÌNH:
\(\sqrt{2x-3}-\sqrt{5-2x}=3x^2-12x+14\)
\(x=\sqrt{1-\frac{1}{x}}+\sqrt{x-\frac{1}{x}}\)
\(\sqrt{x^2+x-1}+\sqrt{-x^2+x+1}=x^2-x+2\)
giải phương trình:
\(a,\sqrt{2x-3}+\sqrt{5-2x}=3x^2-12x+14\)
\(b,x^2-2x-x\sqrt{x}-2\sqrt{x}+4=0\)
\(c,3x^2+21x+18+2\sqrt{x^2+7x+7}=2\)
\(d,\frac{2\sqrt{2}}{\sqrt{x+1}}+\sqrt{x}=\sqrt{x+9}\)
\(c,\sqrt{3x^2-5x+1}-\sqrt{x^2-2}=\sqrt{3\left(x^2-x-1\right)}-\sqrt{x^2-3x+4}\)