ĐKXĐ: ...
\(VT\le\sqrt{2\left(x-4+6-x\right)}=2\)
\(VP=\left(x-5\right)^2+2\ge2\ge VT\)
Dấu "=" xảy ra khi và chỉ khi:
\(\left\{{}\begin{matrix}x-4=6-x\\x-5=0\end{matrix}\right.\) \(\Leftrightarrow x=5\)
ĐKXĐ: ...
\(VT\le\sqrt{2\left(x-4+6-x\right)}=2\)
\(VP=\left(x-5\right)^2+2\ge2\ge VT\)
Dấu "=" xảy ra khi và chỉ khi:
\(\left\{{}\begin{matrix}x-4=6-x\\x-5=0\end{matrix}\right.\) \(\Leftrightarrow x=5\)
Giải phương trình: \(\sqrt{x^2-10x+25}=\sqrt{6+4\sqrt{2}}+\sqrt{6-4\sqrt{2}}\)
Giải phương trình:
\(\sqrt{4-x^2}+6=2\sqrt{2+x}+3\sqrt{2-x}\\ \left(\sqrt{2-x}+1\right)^2=3x+1\)
\(\sqrt{2x-3}+\sqrt{5-2x}=3x^2-12x+14\)
\(\sqrt{x-4}+\sqrt{6+x}=x^2-10x+27\left(4_{ }< x< 6\right)\)
giải phương trình :
\(\sqrt{x^2+10x+21}=3\sqrt{x+3}+2\sqrt{x+7}-6\)
Giải các phương trình sau: \(\left(\sqrt{x+5}-\sqrt{x+2}\right).\left(4+\sqrt{x^2+7x+10}\right)=6\)
giải phương trình \(\sqrt{x-4\sqrt{x-1}+3}+\sqrt{x-6\sqrt{x-1}+8}=1\)
giải bất phương trình \(\left(\sqrt{13}-\sqrt{2x^2-2x+5}-\sqrt{2x^2-4x+4}\right)\left(x^6-x^3+x^2-x+1\right)\ge0\)
1. giải phương trình bậc hai một ẩn
a, 3x2+7x+2=0
b,\(\dfrac{x^2}{3}+\dfrac{4x}{5}-\dfrac{1}{12}\)=0
c\(\left(5-\sqrt{2}\right).x^2-10x+5x+\sqrt{2}=0\)
d,(x-1)(x+2)=70
Giải phương trình:
$a) \sqrt{x - 7} + \sqrt{9 - x} = x^{2} - 16x + 66$
$b) \sqrt{3x^{2} + 6x + 7} + \sqrt{5x^{2} + 10x + 14} = 4 - 2x - x^{2}$
$c) \sqrt{x - 2} + \sqrt{10 - x} = x^{2} - 12x + 40$