GIẢI PHƯƠNG TRÌNH:
\sqrt{4x+1}-\sqrt{3x-2}=\frac{x+3}{5}
giải phương trình:\(\sqrt{4x+1}-\sqrt{3x-2}=\frac{x+3}{5}\)
Giải phương trình: \(\sqrt{4x+1}-\sqrt{3x-2}=\frac{x+3}{5}\)
giải phương trình:
a)\(\sqrt{x^2-3x+2}+\sqrt{x+3}=\sqrt{x-2}+\sqrt{x^2+2x-3}\)
b)\(\sqrt{4x+1}-\sqrt{3x-2}=\frac{x+3}{5}\)
giải phương trình:
1,\(\sqrt{3x-8}\)-\(\sqrt{x+1}\)=\(\dfrac{2x-11}{5}\)
2,3x2-3x+18=10\(\sqrt{x^3+8}\)
3,\(\sqrt{5+2x}\)+\(\sqrt{5-2x}\)+5=3\(\sqrt{25-4x^2}\)
Giải phương trình:
\(\sqrt[3]{x+2}+\sqrt[3]{x^2+3x-5}=\sqrt[3]{x^2+4x-4}+1\)
giải phương trình sau: \(\sqrt{4x+1}-\sqrt{3x-2}=\frac{x+3}{5}\) mình cần gấp
Giải hệ phương trình: \(\hept{\begin{cases}x^2+y^2+xy=9\\x+y+xy=3\end{cases}}\)
Giải phương trình \(\sqrt[3]{x^2+2}+\sqrt[3]{4x^2+3x-2}=\sqrt[3]{3x^2+x+5}+\sqrt[3]{2x^2+x-5}\)
Giải phương trình \(3\left(x^2-x+1\right)=\left(x+\sqrt{x-1}\right)^2\)
Giải phương trình:
\(9+\sqrt{5}x^3+5x+\frac{\sqrt{5}}{x^3}=3\sqrt{5}x^2+3x+\frac{3\sqrt{5}-1}{x}+\frac{3}{x^2}\)