\(5x^2-x+5=\sqrt{x^4+x^2+1}\)
\(\Leftrightarrow5x^2-x+5=\sqrt{\left(x^2-x+1\right)\left(x^2+x+1\right)}\)
Đặt \(a=\sqrt{x^2-x+1};b=\sqrt{x^2+x+1}\left(a;b>0\right)\)
Pt tt: \(3a^2+2b^2=ab\)
\(\Leftrightarrow3a^2-ab+2b^2=0\)
\(\Leftrightarrow3\left(a-\dfrac{b}{6}\right)^2+\dfrac{23}{12}b^2=0\)(vô nghiệm)
Vậy pt vô nghiệm