\(\left(x^2+2x+1\right)\left(x+2\right)+\left(x^2-2x+1\right)\left(x-2\right)=12\)
\(x^3+2x^2+x+2x^2+4x+2+x^3-2x^2+x-2x^2+4x-2=12\)
\(2x^3+10x-12=0\)
\(2x^3-2x^2+2x^2-2x+12x-12=0\)
\(2x^2\left(x-1\right)+2x\left(x-1\right)+12\left(x-1\right)=0\)
\(\left(x-1\right)\left(2x^2+2x+12\right)=0\)
\(\left(x-1\right)\times2\left(x^2+x+6\right)=0\)
\(\left(x-1\right)\left(x^2+2\times x\times\frac{1}{2}+\frac{1}{4}-\frac{1}{4}+6\right)=0\)
\(\left(x-1\right)\left(\left(x+\frac{1}{2}\right)^2+\frac{23}{4}\right)=9\)
Vế 2 >0
=> Nghiệm là x=1