`|1/x+3|+|1/x-3|=1+|1/x^2-9|`
`<=>|1/x+3|+|1/x-3|=|(1/x-3)(1/x+3)|+1`
`<=>|1/x+3|-1=|(1/x-3)(1/x+3)|-|1/x-3|`
`<=>|1/x+3|-1=|(1/x-3)|(|1/x+3|-1)`
`<=>(|1/x+3|-1)(|1/x-3|-1)=0`
`+)|1/x+3|=1`
`<=>` $\left[ \begin{array}{l}\dfrac1x+3=1\\\dfrac1x+3=-1\end{array} \right.$
`<=>` $\left[ \begin{array}{l}\dfrac1x+2=0\\\dfrac1x+4=0\end{array} \right.$
`<=>` $\left[ \begin{array}{l}2x+1=0\\4x+1=0\end{array} \right.$
`<=>` $\left[ \begin{array}{l}x=-\dfrac12\\x=-\dfrac14\end{array} \right.$
`+)|1/x-3|=1`
`<=>` $\left[ \begin{array}{l}\dfrac1x-3=1\\\dfrac1x-3=-1\end{array} \right.$
`<=>` $\left[ \begin{array}{l}\dfrac1x-4=0\\\dfrac1x-2=0\end{array} \right.$
`<=>` $\left[ \begin{array}{l}4x-1=0\\2x-1=0\end{array} \right.$
`<=>` $\left[ \begin{array}{l}x=\dfrac12\\x=\dfrac14\end{array} \right.$
Vậy `S={1/2,-1/2,1/4,-1/4}`