Ta có:
\(a^4+b^4+\left(a+b\right)^4=2\left(a^2+ab+b^2\right)^2\)
Áp dụng vào bài ta có:
`(3-x)^2+(2-x)^2=(5-2x)^2`
`<=>(3-x)^2+(2-x)^2+(5-2x)^2=2(5-2x)^4`
`<=>2[(3-x)^2+(3-x)(2-x)+(2-x)^2]^2=2(5-2x)^4`
`<=>(9-6x+x^2+6-3x-2x+x^2+4-4x+x^2)^2=[(5-2x)^2]^2`
`<=>(3x^2-15x+19)^2=(4x^2-20x+25)^2`
`<=>(4x^2-20x+25)^2-(3x^2-15x+19)^2=0`
`<=>(4x^2-20x+25-3x^2+15x-19)(4x^2-20x+25+3x^2-15x+19)=0`
`<=>(x^2-5x+6)(7x^2-35x+44)=0`
Mà: `7x^2-35x+44>0`
`=>x^2-5x+6=0`
`<=>(x^2-2x)+(-3x+6)=0`
`<=>x(x-2)-3(x-2)=0`
`<=>(x-2)(x-3)=0`
`<=>x=2` hoặc `x=3`