ĐKXĐ: \(2sinx-\sqrt{2}\ne0\)
=>\(sinx\ne\dfrac{1}{\sqrt{2}}\)
=>\(\left\{{}\begin{matrix}x\ne\dfrac{\Omega}{4}+k2\Omega\\x\ne\dfrac{3}{4}\Omega+k2\Omega\end{matrix}\right.\)
\(\dfrac{tanx-1}{2sinx-\sqrt{2}}=0\)
=>\(tanx-1=0\)
=>\(tanx=1\)
=>\(x=\dfrac{\Omega}{4}+k\Omega\)
Kết hợp ĐKXĐ, ta được: \(\left\{{}\begin{matrix}x=\dfrac{\Omega}{4}+k\Omega\\x\notin\left\{\dfrac{\Omega}{4}+k2\Omega;\dfrac{3}{4}\Omega+k2\Omega\right\}\end{matrix}\right.\)
=>\(x\in\left\{\dfrac{5}{4}\Omega+k2\Omega\right\}\)