Bài 7:
a: Xét ΔAMB và ΔAMC có
AM chung
MB=MC
AB=AC
Do đó: ΔAMB=ΔAMC
b: Ta có: ΔAMB=ΔAMC
=>\(\widehat{BAM}=\widehat{CAM}\)
mà tia AM nằm giữa hai tia AB,AC
nên AM là phân giác của góc BAC
Ta có: ΔAMB=ΔAMC
=>\(\widehat{AMB}=\widehat{AMC}\)
mà \(\widehat{AMB}+\widehat{AMC}=180^0\)(hai góc kề bù)
nên \(\widehat{AMB}=\widehat{AMC}=\dfrac{180^0}{2}=90^0\)
=>AM\(\perp\)BC
c: Xét ΔDBC có
DM là đường cao
DM là đường trung tuyến
Do đó: ΔDBC cân tại D
=>DB=DC
Bài 6:
a: Xét ΔAMB và ΔEMC có
MA=ME
\(\widehat{AMB}=\widehat{EMC}\)(hai góc đối đỉnh)
MB=MC
Do đó: ΔAMB=ΔEMC
b: Ta có: ΔAMB=ΔEMC
=>\(\widehat{MAB}=\widehat{MEC}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AB//EC
Ta có: AB//EC
AB\(\perp\)AC
Do đó: EC\(\perp\)AC
c: Xét ΔECA vuông tại C và ΔBAC vuông tại A có
EC=BA
AC chung
Do đó: ΔECA=ΔBAC
=>EA=BC
mà EA=2AM
nên BC=2AM