Hệ \(\Leftrightarrow\frac{x+y}{xy}=\frac{5}{6};\frac{y+z}{yz}=\frac{7}{12};\frac{x+z}{xz}=\frac{3}{4}\)
\(\Leftrightarrow\frac{1}{x}+\frac{1}{y}=\frac{5}{6}\left(1\right);\frac{1}{y}+\frac{1}{z}=\frac{7}{12}\left(2\right);\frac{1}{x}+\frac{1}{z}=\frac{3}{4}\left(3\right)\)
Cộng (1), (2),(3) vtv:\(\frac{2}{x}+\frac{2}{y}+\frac{2}{z}=\frac{13}{6}\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{13}{12}\left(4\right)\)
Lấy (4) trừ (1),(2),(3) :\(\frac{1}{z}=\frac{1}{4};\frac{1}{x}=\frac{1}{2};\frac{1}{y}=\frac{1}{3}\)
Vậy: \(x=2;y=3;z=4\)
Các bạn giải xót nghiệm (0;0;0) rồi nha