Ta có:
\(x^3-27-9\left(x-3\right)=\left(x-3\right)\left(x^2+3x+9\right)-9\left(x-3\right)\)
\(=\left(x-3\right)\left(x^2+3x+9-9\right)=\left(x-3\right)\left(x^2+3x\right)\)
\(=\left(x-3\right)\left(x+3\right)x=x\left(x^2-9\right)\)
(x^3-27)-9(x-3)=x(x^2-9)
<=>(x-3)(x^2+3x+9)-9(x-3)-x(x-3)(x+3)=0
<=>(x-3)(x^2+3x-x(x+3) )=0
<=>(x-3)(x^2+3x-x^2-3x)=0
<=>(x-3)=0
<=>x=3
bn tách ra là đc nhá
(x^3-27)-9(x-3)
=x^3-27-9x+27
=x^3-9x
rút x ra
=x(x^2-9)
b: Ta có: \(x^3-27-9\left(x-3\right)=x\left(x^2-9\right)\)
\(\Leftrightarrow x^3-27-9x+27-x^3+9x=0\)
\(\Leftrightarrow0x=0\left(luônđúng\right)\)