\(2x\left(x^2+1\right)-2x^2\left(x+1\right)=0\)
\(\Leftrightarrow2x^3+2x-2x^3-2x^2=0\)
\(\Leftrightarrow2x-2x^2=0\)
\(\Leftrightarrow2x\left(1-x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=0\\1-x=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
b,2x(x^2+1)-2x^2(x+1)=0
<=>2x^3+2x-2x^3-2x^2=0
<=>2x-2x^2=0
<=>2x(1-x)=0
<=>2x=0 hoặc 1-x=0
<=>x=0 hoặc x=1
b: Ta có: \(2x\left(x^2+1\right)-2x^2\left(x+1\right)=0\)
\(\Leftrightarrow2x^3+2x-2x^3-2x^2=0\)
\(\Leftrightarrow2x\left(1-x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)