Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
nguyễn

giải các phương trình sau :                                                                                     a) 6x- 5x+ 3= 2x - 3x(3- 2x)                                                                                    b)      (3x - 1)(4x+3) = 2(3x-1)                                                                                     

 

YangSu
9 tháng 3 2023 lúc 21:03

\(a,6x^2-5x+3=2x-3x\left(3-2x\right)\)

\(\Leftrightarrow6x^2-5x+3=2x-9x+6x^2\)

\(\Leftrightarrow6x^2-6x^2-5x-2x+9x=-3\)

\(\Leftrightarrow2x=-3\)

\(\Leftrightarrow x=-\dfrac{3}{2}\)

\(b,\left(3x-1\right)\left(4x+3\right)=2\left(3x-1\right)\)

\(\Leftrightarrow\left(3x-1\right)\left(4x+3\right)-2\left(3x-1\right)=0\)

\(\Leftrightarrow\left(3x-1\right)\left(4x+3-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}3x-1=0\\4x+1=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\\x=-\dfrac{1}{4}\end{matrix}\right.\)

Nguyễn Tân Vương
10 tháng 3 2023 lúc 9:57

\(6x^2-5x+3=2x-3x\left(3-2x\right)\)

\(\Leftrightarrow6x^2-5x+3=2x-9x+6x^2\)

\(\Leftrightarrow6x^2-5x+3-2x+9x-6x^2=0\)

\(\Leftrightarrow2x+3=0\)

\(\Leftrightarrow2x=-3\)

\(\Leftrightarrow x=\dfrac{-3}{2}\)

\(\text{Vậy phương trình có tập nghiệm là }S=\left\{\dfrac{-3}{2}\right\}\)

\(\left(3x-1\right)\left(4x+3\right)=2\left(3x-1\right)\)

\(\Leftrightarrow\left(3x-1\right)\left(4x+3\right)-2\left(3x-1\right)=0\)

\(\Leftrightarrow\left(3x-1\right)\left(4x+3-2\right)=0\)

\(\Leftrightarrow\left(3x-1\right)\left(4x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}3x-1=0\\4x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=1\\4x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\\x=\dfrac{1}{4}\end{matrix}\right.\)

\(\text{Vậy phương trình có tập nghiệm là }S=\left\{\dfrac{1}{3};\dfrac{1}{4}\right\}\)


Các câu hỏi tương tự
~Nguyễn Tú~
Xem chi tiết
Lê Trà My
Xem chi tiết
Lê Văn Anh Minh
Xem chi tiết
Pham Trong Bach
Xem chi tiết
BoSo WF
Xem chi tiết
Nguyễn Duy Khang
Xem chi tiết
Nguyễn Duy Khang
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Nguyễn Huy Chương
Xem chi tiết