giải pt
\(\frac{2\left(x-\sqrt{2}\right)\left(x-\sqrt{3}\right)}{\left(1-\sqrt{2}\right)\left(1-\sqrt{3}\right)}+\frac{3\left(x-1\right)\left(x-\sqrt{3}\right)}{\left(\sqrt{2}-1\right)\left(\sqrt{2}-\sqrt{3}\right)}+\frac{4\left(x-1\right)\left(x-\sqrt{2}\right)}{\left(\sqrt{3}-1\right)\left(\sqrt{3}-2\right)}\)=3x-1
Áp dụng nội suy niu tơn để giải pt sau
\(\frac{2\left(x-\sqrt{2}\right)\left(x-\sqrt{3}\right)}{\left(1-\sqrt{2}\right)\left(1-\sqrt{3}\right)}+\frac{3\left(x-1\right)\left(x-\sqrt{3}\right)}{\left(\sqrt{2}-1\right)\left(\sqrt{2}-\sqrt{3}\right)}+\frac{4\left(x-1\right)\left(x-\sqrt{2}\right)}{\left(\sqrt{3}-1\right)\left(\sqrt{3}-\sqrt{2}\right)}=3x-1\)
Giải Phương Trình
\(\sqrt{\left(2x+3\right)^2}=5\)
\(\sqrt{9\left(x-2\right)^2}=18\)
\(\sqrt{9x-18}-\sqrt{4x-8}+3\sqrt{x-2}=40\)
\(\sqrt{4.\left(x-3\right)^2}=8\)
\(\sqrt{5x-6}-3=0\)
Rút gọn:
\(A=\frac{x^2+5x+6+x\sqrt{9-x^2}}{3x-x^2+\left(x+2\right).\sqrt{9-x^2}}\)
\(B=\frac{x^2-5x+6+3\sqrt{x^2-6x+8}}{3x-12+\left(x-3\right).\sqrt{x^2-6x+8}}\)
\(C=\frac{\sqrt{2\sqrt{4-x^2}}.\left(\sqrt{\left(2+x\right)^3}-\sqrt{\left(2-x\right)^3}\right)}{4+\sqrt{4-x^2}}\)
Rút gọn:
\(A=\frac{x^2+5x+6+x\sqrt{9-x^2}}{3x-x^2+\left(x+2\right).\sqrt{9-x^2}}\)
\(B=\frac{x^2-5x+6+3\sqrt{x^2-6x+8}}{3x-12+\left(x-3\right).\sqrt{x^2-6x+8}}\)
\(C=\frac{\sqrt{2\sqrt{4-x^2}}.\left(\sqrt{\left(2+x\right)^3}-\sqrt{\left(2-x\right)^3}\right)}{4+\sqrt{4-x^2}}\)
1)giải pt \(x^3-9x^2+6x-6-3\sqrt[3]{6x^2+2}=0\)
2) giải hệ pt \(\int^{\sqrt{x}\left(1+\frac{3}{x+3y}\right)=2}_{\sqrt{7y}\left(1-\frac{3}{x+3y}\right)=4\sqrt{2}}\)
\(\frac{\sqrt{x^2-x-6}+3\sqrt{x}-\sqrt{2\left(x^2+5x-3\right)}}{x+3-\sqrt{2\left(x^2-10\right)}}\ge0\)
\(\left(\frac{2}{\sqrt{x}-2}+\frac{3}{2\sqrt{x}+1}-\frac{5\sqrt{x}-7}{2x-3\sqrt{x}-2}\right)\): \(\frac{2\sqrt{x}+3}{5x-10\sqrt{x}}\)(với x >0, x khác 4)
hộ e vs ak
Giải các pt vô tỉ sau ( bằng phương pháp đặt ẩn phụ đưa về phương trình tích )
a) \(\sqrt{x^3+x^2+3x+3}+\sqrt{2x}=\sqrt{x^2+3}+\sqrt{2x^2+2x}\)
b) \(\sqrt{x^2-3x}+2\sqrt{x}-4\sqrt{x-3}-x+8=0\)
c) \(\left(5x^2+4x+3\right)\sqrt{x}=\left(x+3\right)\sqrt{5x^2+4x}\)
d) \(\left(x+2\right)\sqrt{3x+\frac{1}{x}}=3x^2+3\)
e)\(\left(x^2+2x+1\right)3\sqrt{x^2+\frac{3}{x}}=x^3+2x^2+5\)