\(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)=24\)
\(\Leftrightarrow\left(x^2+5x+4\right)\left(x^2+5x+6\right)-24=0\)
Đặt \(t=x^2+5x+4\)ta đc:
\(t\left(t+2\right)-24=0\)\(\Leftrightarrow t^2-4t+6t-24=0\)
\(\Leftrightarrow t\left(t-4\right)+6\left(t-4\right)=0\)
\(\Leftrightarrow\left(t+6\right)\left(t-4\right)=0\)\(\Leftrightarrow\orbr{\begin{cases}t=-6\\t=4\end{cases}}\)
Với \(t=-6\Rightarrow x^2+5x+4=-6\)\(\Rightarrow x^2+5x+10=0\)
\(\Rightarrow\left(x+\frac{5}{2}\right)^2+\frac{15}{4}\ge\frac{15}{4}>0\left(loai\right)\)
Với \(t=4\Rightarrow x^2+5x+4=4\)\(\Rightarrow x\left(x+5\right)=0\)\(\Rightarrow\orbr{\begin{cases}x=0\\x=-5\end{cases}}\)
Chứng minh một số có tổng các chữ số là 2015 thì không phải là số chính phương.