có \(A=-\left[\left(2x\right)^2-2.2x.\frac{1}{2}+\left(\frac{1}{2}\right)^2-\left(\frac{1}{2}\right)^2-5\right]\)
\(=-\left[\left(2x-\frac{1}{2}\right)^2-\frac{21}{4}\right]=-\left(2x-\frac{1}{2}\right)^2+\frac{21}{4}\ge\frac{21}{4}\)
Vậy Min A = \(\frac{21}{4}\) khi đó \(-\left(2x-\frac{1}{2}\right)^2=0\Rightarrow\left(2x-\frac{1}{2}\right)^2=0\Rightarrow2x-\frac{1}{2}=0\Rightarrow2x=\frac{1}{2}\Rightarrow x=\frac{1}{4}\)