Ta có:
\(A=4x^2+2x-5=4\left(x^2+x-\frac{5}{4}\right)\)
\(A=4\left(x^2+\frac{1}{2}x+\frac{1}{2}x+\frac{1}{4}-\frac{3}{2}\right)\)
\(A=4\left[x\left(x+\frac{1}{2}\right)+\frac{1}{2}\left(x+\frac{1}{2}\right)-\frac{3}{2}\right]\)
\(A=4\left[\left(x+\frac{1}{2}\right)\left(x+\frac{1}{2}\right)-\frac{3}{2}\right]=4\left[\left(x+\frac{1}{2}\right)^2-\frac{3}{2}\right]\)
\(A=4\left(x+\frac{1}{2}\right)^2-4.\frac{3}{2}=4\left(x+\frac{1}{2}\right)^2-6\ge-6\)
=>GTNN của A là -6
tui ko biết là ông sai chỗ nào nhưng Amin=-21/4 ms đúng
\(A=4x^2+2x-5=4\left(x^2+\frac{1}{2}x-\frac{5}{4}\right)\)
\(A=4\left(x^2+\frac{1}{4}x+\frac{1}{4}x+\frac{1}{8}-\frac{11}{8}\right)\)
\(A=4\left[x\left(x+\frac{1}{4}\right)+\frac{1}{4}\left(x+\frac{1}{4}\right)-\frac{11}{8}\right]\)
\(A=4\left[\left(x+\frac{1}{4}\right)\left(x+\frac{1}{4}\right)-\frac{11}{8}\right]=4\left[\left(x+\frac{1}{4}\right)^2-\frac{11}{8}\right]\)
\(A=4\left(x+\frac{1}{4}\right)^2-4.\frac{11}{8}=4\left(x+\frac{1}{4}\right)^2-\frac{11}{2}\ge-\frac{11}{2}\)
Dấu "=" xảy ra <=> \(4\left(x+\frac{1}{4}\right)^2=0\Leftrightarrow\left(x+\frac{1}{4}\right)^2=0\Leftrightarrow x=-\frac{1}{4}\)
Vậy....................
\(A=4\left(x^2+\frac{1}{2}x-5\right)=4\left(x^2+\frac{1}{4}x+\frac{1}{4}x+\frac{1}{16}-\frac{21}{16}\right)\)
\(A=4\left[x\left(x+\frac{1}{4}\right)+\frac{1}{4}\left(x+\frac{1}{4}\right)-\frac{21}{16}\right]\)
\(A=4\left[\left(x+\frac{1}{4}\right)^2-\frac{21}{16}\right]=4\left(x+\frac{1}{4}\right)^2-4.\frac{21}{16}=4\left(x+\frac{1}{4}\right)^2-\frac{21}{4}\ge-\frac{21}{4}\)
=>GTNN của A là -21/4
Dấu "=" xảy ra <=> x=-1/4