Giả sử a;b;a';b' là những số dương và \(\frac{a}{a'}=\frac{b}{b'}\). Hãy trục căn thức ở mẫu số của biểu thức:
\(\frac{1}{\sqrt{a}+\sqrt{b}+\sqrt{a'}+\sqrt{b'}}\)
giả sử a;b;c;d;A;B;C;D là những số nguyên dương và \(\frac{a}{A}+\frac{b}{B}+\frac{c}{C}+\frac{d}{D}\). CMR:
\(\sqrt{aA}+\sqrt{bB}+\sqrt{cC}+\sqrt{dD}=\sqrt{\left(a+b+c+d\right)\left(A+B+C+D\right)}\)
GIÚP MK VỚI, MK CẦN GẤP LẮM!
bài 1:Cho các biểu thức sau:
A=\(\sqrt{\frac{2x+3}{x-3}}\) à B=\(\frac{\sqrt{2x+3}}{\sqrt{x-3}}\)
a) Tìm x để A có nghãi.Tìm x để B có nghĩa
b) Với giá trị nào của x thì A=B
bài 2:Biểu diễn \(\sqrt{\frac{a}{b}}\) với a<0 và b<0 ở dạng thương của hai căn thức
Áp dụng tính: \(\sqrt{\frac{-49}{-81}}\)
Cho a, b, c dương và \(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}=\frac{3}{2}\) Tìm giá trị lớn nhất của biểu thức
\(P=\frac{1}{\sqrt{a^2-ab+b^2}}+\frac{1}{\sqrt{b^2-bc+c^2}}+\frac{1}{\sqrt{c^2-ca+a^2}}\)
Khử mẫu của biểu thức lấy căn
\(\sqrt{\frac{1}{600}}\) ; \(\sqrt{\frac{11}{540}}\) ; \(\sqrt{\frac{3}{50}}\) ; \(\sqrt{\frac{5}{98}}\) ; \(\sqrt{\frac{\left(1-\sqrt{3}\right)^2}{27}}\)
ab\(\sqrt{\frac{a}{b}}\) ; \(\frac{a}{b}\)\(\sqrt{\frac{b}{a}}\) ; \(\sqrt{\frac{1}{b}+\frac{1}{b^2}}\) ; \(\sqrt{\frac{9a^3}{36b}}\) ; 3xy\(\sqrt{\frac{2}{xy}}\)
(Gỉa thiế các biểu thức có nghĩa
1/ Cho các số thực dương a,b với a khác b. Chứng minh đẳng thức sau:
\(\frac{\frac{\left(a-b\right)^3}{\left(\sqrt{a}-\sqrt{b}\right)^3}-b\sqrt{b}+2a\sqrt{a}}{a\sqrt{a}-b\sqrt{b}}+\frac{3a+3\sqrt{ab}}{b-a}=0\)
2/ Cho hai số thực a,b sao cho \(\left|a\right|\ne\left|b\right|\) và ab \(\ne\) 0 thỏa mãn điều kiện:
\(\frac{a-b}{a^2+ab}+\frac{a+b}{a^2-ab}=\frac{3a-b}{a^2-b^2}\). Tính giá trị của biểu thức \(P=\frac{a^3+2a^2b+3b^3}{2a^3+ab^2+b^3}\)
chờ a,b,c là các số dương thỏa mãn a+b+c=abc
CMR: \(\sqrt{a+\frac{1}{a}}+\sqrt{b+\frac{1}{b}}+\sqrt{c+\frac{1}{c}}\ge\sqrt{a+b+c}+\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}\)
Thu gọn biểu thức
a, A = \(\frac{2\sqrt{3-\sqrt{3+\sqrt{3+\sqrt{48}}}}}{\sqrt{6}-2}\)
b, B = \(\frac{\sqrt{a}+\sqrt{b}-1}{a+\sqrt{ab}}+\frac{\sqrt{a}-\sqrt{b}}{2\sqrt{ab}}\cdot\left(\frac{\sqrt{b}}{a-\sqrt{ab}}+\frac{\sqrt{b}}{a+\sqrt{ab}}\right)\)
trục căn thức ở mẫu
a)\(\frac{5}{\sqrt{10}}\)
b)\(\frac{1}{3\sqrt{20}}\)
c)\(\frac{2\sqrt{2}+2}{5\sqrt{2}}\)
d)\(\frac{\sqrt{21}-\sqrt{7}}{1-\sqrt{3}}\)
e)\(\frac{3}{\sqrt{3}+1}\)
f)\(\frac{2}{\sqrt{3}-1}\)